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Abstract—We revisit the problem of recovering a contin-
uous-time signal lying within a known shift-invariant subspace
from nonlinear and nonideal samples. Recently, an iterative
algorithm for perfect recovery of such signals was proposed. This
method requires operations which are not linear time-invariant
(LTI), rendering it impractical due to its polynomial dependency
on the data length. We describe an alternative iterative algorithm
for recovering the signal, which involves only LTI operations. In
the revised method, each iteration is much faster and implemen-
tation is simpler. Furthermore, the overall running time of our
approach depends linearly on the number of samples.

Index Terms—Generalized sampling, interpolation, nonlinear
sampling, shift-invariant spaces.

I. INTRODUCTION

W E consider the problem of recovering a continuous-time
signal that was distorted by a memoryless nonlinear

mapping, and sampled after passing through an anti-aliasing
filter. Nonlinear distortions appear in various setups and appli-
cations of digital signal processing, such as CCD image sensors,
power electronics and radiometric photography (see [1] and ref-
erences therein).

Sampling problems in purely linear setups were studied ex-
tensively [2]–[4]. The theory in this area deals with arbitrary
Hilbert space settings. In this letter we focus on shift-invariant
(SI) settings in which both sampling and reconstruction are ob-
tained by filtering operations and the sampling grid is uniform.
SI spaces are commonly used in various applications; some im-
portant examples include bandlimited signals and splines [3],
[4].

We consider a signal that is known to lie in a SI subspace
, generated by the kernel :

(1)

for some coefficients . We assume that is sampled at
the integers after passing through the memoryless non-
linear mapping and the filter , as shown in Fig. 1.
In the linear setup, . In this case it is well known
that under a simple condition on , and on the SI subspace
generated by , can be perfectly reconstructed from the
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Fig. 1. Nonlinear and nonideal sampling.

Fig. 2. Restoration with linear sampling.

samples [2]. The recovery is obtained by applying a digital cor-
rection filter on the samples before performing reconstruc-
tion with the kernel , as shown in Fig. 2.

In the more complicated situation, where ,
several approaches can be taken. Assuming is invertible, a
naive method would be to first apply on the samples, and
then proceed with the same correction and reconstruction stages
as in the linear case. However, as we show in Section V, this
method is suboptimal in general.

The special case where the sampling filter matches the sub-
space prior, namely the subspaces and coincide, was con-
sidered in several previous works. In [5] uniqueness and exis-
tence theorems were developed for the recovery of nonlinearly
distorted bandlimited signals. It was shown that perfect recovery
is guaranteed if the nonlinearity is monotonic with a bounded
derivative. This result was generalized in [6], [7] to the case of
an arbitrary subspace prior.

A recent work [1] considers the more general case where the
sampling filter does not match the subspace prior. There, the
authors develop simple sufficient conditions on the nonlinear
distortion and the spaces involved, which guarantee the exis-
tence of a unique solution. Moreover, this work proposes an it-
erative algorithm, which is proved to achieve perfect recovery.
The method is based on linearization of the distortion in each it-
eration around the current signal guess. One main drawback of
this approach is that it requires operations which are not linear
time-invariant (LTI). This introduces inherent complexity to the
scheme, since a matrix of the size of the data length has to be
inverted.

In this letter we describe an alternative iterative algorithm that
does not rely on linearization. In each iteration we use the same
stages as in the previous method, except for the non-LTI oper-
ation, which we replace by an LTI filter. This filter is in fact
the standard correction filter shown in Fig. 2 that is used for
recovery in the purely linear sampling setup. We show that if
there exists a unique solution, then our algorithm converges to
it. Furthermore, we prove that when no unique solution exists,
our algorithm still outputs a consistent recovery of the signal if a
condition that is less strict than the uniqueness condition is satis-
fied. A consistent recovery means that its nonlinear and nonideal
samples coincide with the samples of the original signal.
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The letter is organized as follows. Section II summarizes
known uniqueness results for linear and nonlinear sampling
setups. The previous recovery algorithm and its drawbacks are
discussed in Section III. Our method is presented in Section IV.
Finally, Section V shows simulation results and compares
performance of the different recovery methods.

II. CONDITIONS FOR UNIQUENESS

Throughout this letter the signal is assumed to lie in the
SI space for some generator

. We denote by the SI space spanned
by the filter in Fig. 1.

We begin by treating linear setups. In this case the nonideal
samples of are

(2)

It is well known [3] that if can be decomposed into a direct
sum , then perfect recovery of from the sam-
ples (2) can be accomplished. This is obtained using the scheme
shown in Fig. 2 with a digital correction filter whose dis-
crete-time Fourier transform is

(3)

Here

(4)

and and denote the continuous-time Fourier trans-
forms of and respectively. The direct sum condition en-
sures that is stably invertible. Indeed, it can be shown
that it is equivalent to the existence of a scalar such that

[8].
For a general signal (not necessarily in ), the resulting re-

construction equals , where is the oblique pro-
jection onto along . This projection is the unique operator
satisfying for all and for all

[3].
We now turn to treat the memoryless nonlinear setting, and

summarize the uniqueness theorems developed in past works
for this setup. The samples of in this case are given by

(5)

The following theorem provides a sufficient condition for
uniqueness in this setting. This theorem is simply a merge of
Theorems 2 and 5 of [1].

Theorem 1: Assume that . If is invertible
and its derivative satisfies

(6)

for all , then there is a unique whose nonideal
and nonlinear samples

(7)

coincide with the measurements of (5).
The cosine between two SI spaces [2] is defined by

(8)

where , , and are as in (4) with the
appropriate substitution of filters and . The sine be-
tween and can be computed using the relation

.
For the special case of condition (6) becomes

. We note that a weaker condition for this special
case was derived in earlier works [5]–[7]. Specifically, it was
shown that needs only to be monotonic to guarantee unique-
ness.

Once uniqueness is gauranteed, perfect recovery is ensured
for a signal that satisfies the consistency requirement

. In the next section we review the algorithm of [1] that seeks
a consistent recovery.

III. RESTORATION VIA LINEARIZATION

The recovery method developed in [1] is an iterative algo-
rithm that is based on linearization of the distortion in each it-
eration around the current guess of the signal. It is designed to
yield a recovery

(9)

that minimizes the cost function . where
is the known sequence of samples (5) and is given by (7).
By assumption, the minimal cost is . However, since

is nonlinear, the cost function is in general nonconvex and
therefore optimization algorithms for minimizing it might trap
a stationary point. Nevertheless, it was shown in [1] that under
the conditions of Theorem 1 there is only one stationary point,
which is the global minimum. The method can be viewed as
updating the sequence of coefficients in each iteration. A
block diagram of the iterative recovery algorithm is shown in
Fig. 3.

In the figure, the operation is a linear system which
is the inverse of

(10)

When the number of available samples is finite, can
be described by an matrix. Consequently, the algorithm
of Fig. 3 requires the computation and inversion of an
matrix at each iteration. For example, if we deal with images of
megapixel size, a matrix of size must be computed
and inverted, which is clearly infeasible. Furthermore, for an in-
finite number of samples, a closed form expression for
is rarely available.
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Fig. 3. The �th iteration of the recovery algorithm of [1].

As explained in [1], each iteration uses a varying step size
. This step size is chosen by a line search method that uses

a backtracking procedure satisfying the Armijo and curvature
conditions. Convergence of this algorithm is guaranteed if the
conditions of Theorem 1 hold and if the derivative of is Lips-
chitz continuous. This iterative approach can be viewed in sev-
eral ways, one being quasi-Newton iterations, which explains
its fast convergence rate.

IV. RESTORATION VIA SUCCESSIVE APPROXIMATIONS

Due to the complex correction stage introduced by the lin-
earization strategy, here we take a different approach. In fact,
our method originates from the early works [5]–[7] which con-
sidered the special case in which the subspaces and co-
incide. In this section we suggest a recovery algorithm that is
similar to the one proposed there and determine the conditions
that guarantee consistent recovery for situations where the sam-
pling filter does not necessarily match the subspace prior. Con-
sequently, the recovery algorithm that appears in [5]–[7] can be
obtained as a special case.

Theorem 2: Assume that and that is differ-
entiable almost everywhere. If is continuous and its deriva-
tive (when it exists) is bounded below by and above by

, where

(11)

then there exists a signal whose nonideal and non-
linear samples coincide with . The expansion coeffi-
cients of can be obtained from the iterative scheme
that appears in Fig. 3 by replacing the linear system by
the LTI filter of (3), and setting a constant step size
satisfying

(12)

Proof: See Appendix.
Note that we use the same LTI filter for all iterations. The cor-

rection stage is now simply the standard correction filter used
for recovery with linear sampling. Moreover, notice that for
convergence of the algorithm to a consistent recovery we only
need the nonlinearity to have a first derivative which is bounded
below and above by finite and nonzero boundaries, and that
those boundaries are not too far apart. An interesting observa-
tion arises from a comparison to the uniqueness condition (6) of
Theorem 1 which not only requires separate limits:

(13)

but also imposes the joint condition:

(14)

It can be shown that for any pair of subspaces , , (13) and
(14) impose a stricter condition than (11). For example, let
and be spline spaces of orders 2 and 0 respectively. In this
case and . The right-hand
side of (11) becomes 0.068, whereas that of (14) becomes 0.488,
which is clearly a stricter condition. Therefore, our algorithm is
guaranteed to converge to a consistent solution even when there
is no guarantee that there is a unique solution.

A potential increase in convergence rate may be obtained by
using a varying step size. However, our experiments indicate
that there is no gain in the total number of basic loops of the type
shown in Fig. 3, because each iteration requires several basic
loops in order to determine the appropriate step size. Therefore,
in the next section we only report the results of our method with
a constant step size. As we show, our algorithm requires less
running time than the previous one even though it necessitates
more iterations. In addition, each iteration requires only LTI fil-
tering.

V. SIMULATIONS

We now compare the following three recovery methods in
terms of , convergence rate
and running time:

1) Naive approach, namely applying on the samples
and then proceeding with the correction and reconstruction
stages of Fig. 2.

2) The algorithm of [1], outlined in Section III.
3) Our algorithm, as outlined in Section IV.

All algorithms were evaluated in the task of recovering a second
degree spline, so that is a B-spline function of degree 2.
The nonlinear distortion was taken to be , where
is a constant chosen so that condition (11) is satisfied for the
possible range of values of . The sampling filter is a B-spline
of order 0.

The SNRs achieved by the three methods are plotted in Fig. 4
as a function of the number of iterations. We averaged our re-
sults over 50 signals, each generated from 11 random expansion
coefficients . We can see that both iterative algorithms out-
performed the naive method after several iterations and achieved
very high values of SNR. It is worth mentioning that if we wait
until the algorithms converge, both of them achieve perfect re-
covery, even though the sufficient conditions of Theorem 1 do
not hold. In terms of convergence rate, the results fit our expec-
tations. The algorithm of [1] converges very quickly, whereas
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Fig. 4. The SNRs of the different recovery methods as a function of the number
of iterations.

Fig. 5. The running times in Matlab of the different recovery methods as a
function of the number of samples.

the algorithm proposed in Theorem 2 requires more iterations
for good recovery results.

The running times in Matlab for both iterative methods are
plotted in Fig. 5 as a function of the number of available sam-
ples. All the times were evaluated for an SNR of 60 dB. We can
see that our method requires less running time than the previous
one. Moreover, the running time of our algorithm increases lin-
early with the number of samples, whereas the increase for the
previous approach is polynomial.

VI. CONCLUSION

In this letter we addressed the problem of recovering a signal
within a subspace from its nonlinear and nonideal samples. We
presented a recovery algorithm that uses a much simpler, faster
and practical correction stage than the recently proposed lin-
earization-based method. The price paid for this improvement
is a slower convergence rate. Nevertheless, the total running
time is decreased in our algorithm and depends linearly on
the number of samples. This is a significant improvement in
comparison with the polynomial complexity of the previous
approach.

APPENDIX

PROOF OF THEOREM 2

First, we define a mapping from to itself:

(15)

where is an oblique projection defined in Section II and
the operator is defined by

. Using this mapping, the iterative scheme shown in
Fig. 3 can be written in terms of as .

Next, we show that for an appropriate choice of a step size ,
the mapping is a contraction. Indeed

(16)

for any , where we used the following inequality [9]:

(17)

We conclude that we need to choose a step size such that

(18)

leading to (12). Condition (11) ensures that such an exists.
We showed that is a contraction mapping and thus, by

the fixed point theorem [10], the sequence converges to the
unique fixed point of , which remains to be found. To this end
we substitute into (15), leading to

(19)

This implies that , meaning that
. Consequently,

for every , which is equivalent to the
consistency requirement .
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