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ABSTRACT

In this paper, we derive lower bounds on the estimation error of finite

rate of innovation signals from noisy measurements. We first obtain

a fundamental limit on the estimation accuracy attainable regardless

of the sampling technique. Next, we provide a bound on the per-

formance achievable using any specific sampling method. Essential

differences between the noisy and noise-free cases arise from this

analysis. In particular, we identify settings in which noise-free re-

covery techniques deteriorate substantially under slight noise levels,

thus quantifying the numerical instability inherent in such methods.

The results are illustrated in a time-delay estimation scenario.

Index Terms— Finite rate of innovation, Time-delay estima-

tion, Cramér–Rao bound, Union of subspaces

1. INTRODUCTION

The goal of sampling theory is to recover a continuous-time signal

x(t) from a discrete set of measurements. The archetypical example

in this field is the Shannon sampling theorem, which states that a

B-bandlimited function can be reconstructed from samples taken at

a rate of 2B. Recently, considerable attention has been devoted to

the extension of this theory to arbitrary signals having a finite rate

of innovation (FRI), which are functions parameterized by a finite

number ρ of parameters per time-unit. For a variety of families of

FRI signals, several existing algorithms are guaranteed to recover

the signal x(t) from samples taken at rate ρ [1–6].

Real-world signals are often contaminated by noise and thus do

not conform precisely to the FRI model. It is therefore of interest to

quantify the effect of noise on FRI techniques. In the noisy case, it

is no longer possible to perfectly recover the original signal from its

samples. Nevertheless, one might hope for an appropriate finite-rate

technique which achieves the best possible estimation accuracy, in

the sense that increasing the sampling rate confers no further per-

formance benefits. For example, to recover a B-bandlimited signal

contaminated by white noise, one can use an ideal low-pass filter

with cutoff B prior to sampling at the rate of innovation, which is

ρ = 2B. It can be shown that this approach achieves an optimal re-

covery error, even among techniques having arbitrary sampling rates.

By contrast, empirical observations indicate that, for some FRI

signals, any increase in the sampling rate improves estimation ac-

curacy [2–6]. In this paper, we provide analytical justification

and quantification of these empirical findings. We first derive

the Cramér–Rao bound (CRB) for estimating x(t) directly from
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continuous-time measurements y(t) = x(t) + w(t), where w(t)
is a Gaussian white noise process. This setting is to be distinguished

from previous bounds in the FRI literature [7, 8] in three respects.

First, the measurements are a continuous-time process y(t) and the

bound therefore applies regardless of the sampling method. Second,

in our model, the noise is added prior to sampling. Consequently,

even sampling at an arbitrarily high rate will not completely compen-

sate for measurement noise. Third, we bound the MSE in estimating

x(t) and not the parameters defining it; this involves a delicate anal-

ysis of the CRB for estimating a continuous-time function.

In practice, rather than processing the continuous-time signal

y(t), it is typically desired to estimate x(t) from a discrete set of

samples {cn} of y(t). To quantify the extent to which sampling de-

grades the ability to recover the signal, we derive the CRB for esti-

mating x(t) from the measurements {cn}. This analysis reveals two

interesting phenomena. First, desirable sampling techniques can be

identified as those whose performance approaches the continuous-

time bound. Second, as opposed to the noiseless setting in which ρ
samples per time unit typically suffice for recovery, in this setting the

MSE depends on the specific structure of the set of feasible signals.

In particular, we identify settings in which significant oversampling

is required in order to optimally estimate the underlying signal.

We demonstrate our results via the problem of estimating a se-

quence of pulses having unknown positions and amplitudes [1, 3, 4,

6]. In this case, a simple sufficient condition is obtained for the ex-

istence of a sampling scheme whose performance bound coincides

with the continuous-time CRB. This scheme is based on sampling

the Fourier coefficients of the pulse shape, and is reminiscent of re-

cent time-delay estimation algorithms [6]. However, while the sam-

pling scheme is theoretically sufficient for optimal recovery of x(t),
we show that in some cases there is room for substantial improve-

ment in the reconstruction stage of these algorithms.

2. SETTING

A signal x(t) is said to have a rate of innovation ρ if any segment

{x(t) : t ∈ [T1, T2]} is determined by no more than (T2 − T1)ρ
parameters. We wish to estimate such signals from noisy measure-

ments. For concreteness, let us focus on the problem of estimating

the finite-duration segment {x(t) : t ∈ [0, T ]}, for some constant T ,

and assume for simplicity that K = ρT is an integer. We then have

x ∈ X , {hθ : θ ∈ Θ} ⊂ L2[0, T ] (1)

where {hθ : θ ∈ Θ} is a set of functions in L2[0, T ] which are

parameterized by the deterministic unknown vector θ, and Θ is an

open subset of RK .

We wish to examine the random process

y(t) = x(t) + w(t), t ∈ [0, T ] (2)
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where w(t) is continuous-time white Gaussian noise. Since formally

it is not possible to define Gaussian white noise over a continuous-

time probability space [9], we interpret (2) as a simplified notation

for the equivalent set of measurements

z(t) =

∫ t

0

x(τ)dτ + σb(t), t ∈ [0, T ] (3)

where b(t) is a standard Wiener process (also called Brownian mo-

tion) [10]. It follows that w(t) can be considered as a random pro-

cess such that, for any f ∈ L2, the integral
∫ T

0
f(t)w(t)dt is a Gaus-

sian random variable with mean 0 and variance σ2
∫ T

0
|f(t)|2dt [9].

In this paper, we consider estimators which are functions either

of the entire continuous-time process (2) or of some subset of the

information present in (2), such as samples of the continuous-time

process. To treat these two cases in a unified way, let (Ω,F ) be a

measurable space and let {Pθ : θ ∈ Θ} be a family of probability

measures over (Ω,F ). Let (Y,U ) be a measurable space, and let

the random variable y : Ω → Y denote the measurements. An esti-

mator can be defined in this general setting as a measurable function

x̂ : Y → L2. The MSE of an estimator x̂ at x is defined as

MSE(x̂, x) ,

∫ T

0

E
{

|x̂(t)− x(t)|2
}

dt. (4)

An estimator x̂ is said to be unbiased if

E{x̂(t)} = x(t) for all x ∈ X and almost all t ∈ [0, T ]. (5)

Our goal in this paper will be to determine the CRB, which is a lower

bound on the MSE of unbiased estimators, under several measure-

ment models.

Throughout the paper, we will require the following regularity

assumptions.

R1) hθ is Fréchet differentiable with respect to θ, in the sense that

for each θ, there exists a continuous linear operator ∂hθ/∂θ :
R

K → L2 such that, for any sufficiently small δ ∈ R
K ,

hθ+δ − hθ

‖δ‖
=

∂hθ

∂θ
δ + o(‖δ‖) as ‖δ‖ → 0. (6)

R2) The null space of the mapping ∂hθ/∂θ contains only the zero

vector. This assumption is required to ensure that the mapping

from θ to x is non-redundant, in the sense that there does not

exist a parametrization of X in which the number of degrees of

freedom is smaller than K.

3. CRB FOR CONTINUOUS-TIME MEASUREMENTS

When no constraints are imposed (i.e., X = L2), a bound for esti-

mating x(t) from measurements contaminated by colored noise was

derived in [11]. However, this bound does not hold when the noise

w(t) is white. Indeed, in the white noise case, it can be shown that

no finite-MSE unbiased estimators exist, unless further information

about x(t) is available. For example, the naive estimator x̂(t) = y(t)
has an error x̂(t)− x(t) equal to w(t), whose variance is infinite. In

our setting, however, we are given the additional information that

x ∈ X. As we show below, a finite-valued CRB can then be con-

structed by requiring unbiasedness only within the constraint set X,

as per (5). As we will see below, the CRB increases linearly with

the dimension of the manifold X. Thus, in particular, the CRB is

infinite when X = L2. The derivation of our constrained CRB in-

volves careful use of measure theoretic concepts. We thus state the

results here without their proofs, which will appear in a forthcoming

publication [12].

Theorem 1. Let x be a deterministic function defined by (1), where

θ ∈ Θ is an unknown deterministic parameter and Θ is an open

subset of RK . Suppose that Assumptions R1 and R2 are satisfied.

Then, the Fisher information measure (FIM) for estimating θ from

y(t) is given by

J
cont
θ =

1

σ2

(

∂hθ

∂θ

)∗ (

∂hθ

∂θ

)

. (7)

Furthermore, the MSE per time unit of any unbiased, finite-variance

estimator x̂ of x is bounded by

MSE(x̂, x)

T
≥

K

T
σ2 = ρσ2. (8)

We note that Jcont
θ can be used to obtain the CRB for estimating

θ from y(t). However, here we are primarily interested in the MSE

(8) in estimating x(t). While the FIM for estimating θ depends on

the structure of the set X, this dependence vanishes when estimat-

ing x(t) itself. Indeed, the bound (8) reveals an intuitive geometric

interpretation: The set X is a K-dimensional manifold in L2[0, T ],
i.e., for any point x ∈ X, there exists a K-dimensional subspace

U tangent to X at x. We refer to U as the feasible direction sub-

space [13]: any perturbation of x within the constraint set X must be

in U . Formally, U can be defined as the range space of ∂hθ/∂θ. If

one wishes to use the measurements y to distinguish between x and

its local neighborhood, then it suffices to observe the projection of

y onto U . Projecting the measurements onto U removes most of the

noise, retaining only K i.i.d. Gaussian components with a variance

of σ2. Thus, an intuitive explanation is apparent for the bound (8).

4. CRB FOR SAMPLED MEASUREMENTS

In this section, we consider the problem of estimating x(t) of (1)

from a finite number of samples of the process y(t) given by (2).

Specifically, suppose our measurements are given by

cn =

∫ T

0

y(t)s∗n(t)dt, n = 1, . . . , N (9)

where sn ∈ L2[0, T ] are sampling kernels. The measure-

ments c1, . . . , cN are jointly Gaussian with µn , E{cn} and

Cov(ci, cj) =
∫ T

0
si(t)s

∗
j (t)dt. We will be interested in bounds on

the error with which x(t) can be estimated from the measurements

c = (c1, . . . , cN )T . In particular, we wish to determine conditions

under which estimation from the samples c is just as accurate as es-

timation from the continuous-time noise signal y(t).
A somewhat unusual aspect of this estimation setting is that the

choice of the sampling kernels sn(t) affects not only the measure-

ments obtained, but also the statistics of the noise. One example

of the impact of this fact is the following. Suppose we choose a

modified set of sampling kernels {s̃n(t)}
N
n=1 which are an invert-

ible linear transformation of {sn(t)}
N
n=1, i.e.,

s̃n(t) =
N
∑

i=1

Anisi(t) (10)

where A ∈ R
N×N is an invertible matrix. Then, the resulting mea-

surements c̃ are given by c̃ = Ac, and similarly the original mea-

surements c can be recovered from c̃. It follows that these settings

are equivalent in terms of the accuracy with which x can be esti-

mated. Indeed, any estimator x̂(c) can equivalently use the mea-

surements c̃ through x̂(Ac̃). This is to be distinguished from an
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arguably more common estimation scenario, in which a change in

the measurement system does not affect the noise; in the latter case,

an invertible matrix A can have a profound effect on the estimation

accuracy, e.g., by changing the SNR.

The conclusion from the discussion above is that the crucial as-

pect in choosing sampling kernels {sn(t)}
N
n=1 is the space S =

span{s1, . . . , sN} spanned by these kernels. Once a space S is se-

lected, the choice of kernels used to span this space is irrelevant from

an estimation perspective.

Concerning the choice of the subspace S, suppose first that there

exist elements in the range space of ∂hθ/∂θ which are orthogonal

to S . This implies that one can perturb x in such a way that the

constraint set X is not violated, without changing the distribution of

the measurements c. This situation occurs, for example, when the

number of measurements N is smaller than the dimension K of the

parametrization of X. While it may still be possible to reconstruct

some of the information concerning x from these measurements, this

is an undesirable situation from an estimation point of view. Thus we

will assume henceforth that

R

(

∂hθ

∂θ

)

∩ S⊥ = {0}. (11)

We then have the following result.

Theorem 2. Let x be a deterministic function defined by (1), where

θ ∈ Θ is an unknown deterministic parameter and Θ is an open sub-

set of RK . Assume regularity conditions R1 and R2, and let x̂ be an

unbiased estimator of x from the measurements c = (c1, . . . , cN )T

of (9). Then, the FIM J
samp

θ
for estimating θ from c is given by

J
samp

θ
=

1

σ2

(

∂hθ

∂θ

)∗

P S

(

∂hθ

∂θ

)

(12)

where P S is the orthogonal projector onto the subspace S spanned

by {sn(t)}
N
n=1. If (11) holds, then J

samp

θ
is invertible. In this case,

any finite-variance, unbiased estimator x̂ for estimating x from c

satisfies

MSE(x̂, x) ≥ Tr

[(

∂hθ

∂θ

)∗ (

∂hθ

∂θ

)

(J samp

θ
)−1

]

. (13)

It is insightful to compare J
samp

θ
of (12) with the FIM J

cont
θ

obtained from continuous-time measurements in Section 3. In par-

ticular, if it happens that Jcont
θ = J

samp

θ
, then by substituting (7)

into (13), it is seen that the continuous-time bound of Theorem 1 and

the sampled bound of Theorem 2 coincide. Thus, it is possible (at

least in terms of the performance bounds) that estimators based on

the samples c will suffer no degradation compared with the “ideal”

estimator based on the entire set of continuous-time measurements.

The simplest situation in which samples provide all of the in-

formation present in the continuous-time signal is the case in which

X is a K-dimensional subspace of L2. In this case, ∂hθ/∂θ is a

mapping onto the subspace X. Thus, in light of (12), the optimal

choice of a sampling space S is X itself, a choice which requires

N = K. In this case we obtain J
cont
θ = J

samp

θ
. Indeed, this choice

of a sampling space captures the entire signal x while removing all

noise components which are orthogonal to X. The classical scenario

of a bandlimited signal, which was mentioned in Section 1, is the

best-known example of such a signal.

A similar situation occurs when X is a subset of an M -

dimensional subspace M of L2 with M > K. In this case,

∂hθ/∂θi ∈ M for all i and all θ, and therefore R(∂hθ/∂θ) ⊆ M.

Thus, by choosing N = M sampling kernels such that S = M, we

again achieve Jcont
θ = J

samp

θ
, demonstrating that all of the informa-

tion content in x has been captured by the samples. Note, however,

that the required sampling rate N/T is potentially much higher than

the rate of innovation K/T . One example in which this occurs will

be presented in Section 5.

In general, however, the constraint set X will not be contained

in any finite-dimensional subspace of L2. In such cases, it will gen-

erally not be possible to achieve the performance of the continuous-

time bound using any finite number of samples. This situation differs

substantially from the noise-free FRI setting, in which typically K
samples suffice to reconstruct signals which are parameterized by a

vector of length K. It follows that algorithms operating at the rate of

innovation are not, in general, optimally suited for estimation when

noise is present in the system. This conclusion is compatible with

the fact that many FRI algorithms are numerically unstable.

5. EXAMPLE: ESTIMATING MULTI-PULSE SIGNALS

In this section, we focus on a specific application of FRI signals,

namely, that of estimating a signal consisting of a number of pulses

having unknown positions and amplitudes [4–6]. More precisely, we

consider signals of the form

x(t) =
∑

n∈Z

L
∑

ℓ=1

aℓg(t− tℓ − nT ) (14)

where g(t) is a known pulse, and {aℓ} and {tℓ} are unknown am-

plitudes and time delays, respectively. This setting corresponds to

numerous channel sounding applications, such as radar, sonar, ultra-

sound, and cellular channels. By defining the T -periodic function

h(t) =
∑

n∈Z
g(t− nT ), we can write x(t) as

x(t) =

L
∑

ℓ=1

aℓh(t− tℓ). (15)

Our goal is now to estimate x(t) from samples of the noisy pro-

cess y(t) of (2). Since x(t) is T -periodic, it suffices to recover the

signal in the region [0, T ]. In particular, we would like to compare

existing algorithms with the CRB in order to determine when these

algorithms approach the optimal estimation performance.

Let {h̃k}k∈Z be the Fourier series of h(t). The Fourier series of

x(t) is then given by

x̃k ,
1

T

∫ T

0

x(t)e−j2πkt/T dt = h̃k

L
∑

ℓ=1

aℓe
−j2πktℓ/T , k ∈ Z.

(16)

Let K = {k ∈ Z : h̃k 6= 0} denote the indices of the nonzero

Fourier coefficients of h(t). Suppose for a moment that K is finite. It

then follows from (16) that x(t) also has a finite number of nonzero

Fourier coefficients. Consequently, the set X of possible signals x(t)

is contained in the subspace M = span{ej2πkt/T }k∈K. Therefore,

as explained in Section 4, choosing the N = |K| sampling kernels

{sn(t) = ej2πnt/T }n∈K results in a sampled CRB which is equiv-

alent to the continuous-time bound. This result is compatible with

recent work demonstrating successful performance of FRI recovery

algorithms using exponentials as sampling kernels [5].

Note, however, that to achieve the performance obtainable from

the entire continuous-time signal y(t), the number of samples re-

quired is N = |K|, which is potentially much higher than the num-

ber of degrees of freedom in the signal x(t). This provides a theo-

retical explanation of the empirically recognized fact that sampling
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(b) The pulse g(t) is a filtered rect(·) with 401 Fourier coefficients.

Fig. 1. Comparison of the CRB and the performance of a practical estimator, as a function of the number of samples.

above the rate of innovation improves the performance of FRI tech-

niques in the presence of noise [6], a fact which stands in contrast to

the noise-free performance guarantees of many FRI algorithms.

On the other hand, if there exists an infinite number of nonzero

coefficients h̃k, then in general it will not be possible for an algo-

rithm based on a finite number of samples to achieve the perfor-

mance obtainable from the complete signal y(t). This occurs, for

example, whenever g(t) of (14) is time-limited. In such cases, any

increase in the sampling rate will potentially continue to reduce the

CRB, although the sampled CRB will converge to the asymptotic

value of ρσ2 in the limit as the sampling rate increases.

These effects are demonstrated in Fig. 1, which documents sev-

eral experiments comparing the CRB with the time-delay estimation

technique of Gedalyahu et al. [5], whose performance is identical in

the present setting to the method of Vetterli et al. [1]. In these ex-

periments, a signal containing L = 2 pulses with random delays and

amplitudes was constructed. The pulse h(t) consisted of |K| = 401
nonzero Fourier coefficients at positions K = {−200, . . . , 200}.

The CRB is plotted as a function of the number of samples N ,

where the sampling kernels are given by sn(t) = ej2πnt/T with

n ∈ {−⌊N/2⌋, . . . , ⌊N/2⌋}.

In Fig. 1(a), we chose h̃k = 1 for −200 ≤ k ≤ 200 and

h̃k = 0 elsewhere; these are the low-frequency components of a

Dirac delta function. The noise standard deviation was σ = 10−5.

As expected, the sampled CRB achieves the continuous-time bound

ρσ2 when N ≥ |K|. However, the CRB obtained at low sampling

rates is higher by several orders of magnitude than the continuous-

time limit. This indicates that the maxim of FRI theory, whereby

sampling at the rate of innovation suffices for reconstruction, may

not always hold in the presence of mild levels of noise. Observe that

in this scenario, existing algorithms come very close to the CRB.

Thus, the previously observed improvements achieved by oversam-

pling are a result of fundamental limitations of low-rate sampling,

rather than drawbacks of the specific technique used.

Fig. 1(b) plots the results of a similar experiment, in which h̃k

equals the 401 lowest-frequency Fourier coefficients of a rectangular

pulse. In this case, some of the higher Fourier coefficients have small

magnitude, and result in low-SNR measurements. Adding these

measurements can actually be detrimental to the performance of the

examined estimation algorithm. Yet information is clearly present in

these high-frequency samples, as indicated by the continual decrease

of the CRB with increasing N . Thus, our analysis indicates that im-

proved estimation techniques should be achievable in this case, in

particular by careful utilization of low-SNR measurements.
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