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LMMSE Filtering in Feedback Systems With White
Random Modes: Application to Tracking in Clutter

Daniel Sigalov, Tomer Michaeli, Member, IEEE, and Yaakov
Oshman, Fellow, IEEE

Abstract—A generalized state space representation of dynamical sys-
tems with random modes switching according to a white random process is
presented. The new formulation includes a term, in the dynamics equation,
that depends on the most recent linear minimum mean squared error
(LMMSE) estimate of the state. This can model the behavior of a feedback
control system featuring a state estimator. The measurement equation is
allowed to depend on the previous LMMSE estimate of the state, which
can represent the fact that measurements are obtained from a validation
window centered about the predicted measurement and not from the
entire surveillance region. The LMMSE filter is derived for the considered
problem. The approach is demonstrated in the context of target tracking
in clutter and is shown to be competitive with several popular nonlinear
methods.

Index Terms—Clutter and data association, state estimation, target
tracking.

I. INTRODUCTION

State estimation in dynamical systems with randomly switching
coefficients is an important problem in many applications. Natural
examples are maneuvering target tracking and fault detection and
isolation algorithms, featured, e.g., in aerospace navigation systems. In
the standard modeling the dynamics of the continuously-valued state,
and, possibly, its measurement equation, are controlled by a discrete
evolving mode. This is the well known concept of hybrid systems [1].

Various problems have been formulated using the hybrid systems
framework. In cases involving uncertain observations, such as [2], [3],
the mode affects the matrices of the measurement equation. In target
tracking applications, considered in, e.g., [4]–[6], the mode usually
affects the dynamics equation.

We consider a state space representation of dynamical systems
with random coefficients that constitute a white stochastic sequence,
accompanied by the following feedback terms. First, we allow the
system input to depend on the latest estimate of the state, as is common
practice in closed loop control systems. In this work, the state estimate
is taken to be the linear minimum mean squared error (LMMSE)
estimate.

In addition, the measurement equation is also set to depend on
the latest LMMSE state estimate. This can represent the fact that
observations are not taken in the entire feasible space, but, rather, in
a small validation window set about the predicted measurement of the
state.
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It is well known [5] that, even for the case of independently
switching modes, the optimal estimate of the state cannot be obtained
without resorting to exhaustive enumeration. Therefore, significant
efforts have been dedicated to developing suboptimal approaches for
state estimation in hybrid systems and, especially, for the important
subclass of jump linear systems (JLS). The most popular nonlinear
methods include the generalized pseudo-Bayesian (GPB) filter [5] and
the interacting multiple model (IMM) algorithm [6].

Alternatively, one may consider optimality within the narrower
family of linear filters. Among these we mention [2] and [3] that
considered estimation with uncertain observations, [7] that derived
a Kalman filter-like (KF) algorithm for a JLS with independently
switching modes and uncorrelated matrices within each time step, and
[8] that derived an LMMSE scheme for a Markov JLS by means of
state augmentation. In addition, in some cases, the state may be esti-
mated optimally within the family of filters which are linear in some
of the measurements and nonlinear in the rest, as was shown in [9].

In this paper we concentrate on feedback JLS with independent
mode transitions and consider optimal estimation within the family of
linear filters.

We derive an LMMSE algorithm that may be conveniently im-
plemented in a recursive form, eliminating the need for unbounded
memory. Unlike [7], we do not assume that the matrices within each
time step are uncorrelated. This allows tackling a wider variety of
problems, such as tracking in clutter, which cannot be modeled directly
within the framework of [7]. On the other hand, since we still treat
the easier case of independent, rather than Markov, mode transitions,
we do not require state augmentation, as does the algorithm of [8].
Our filter reduces to several previously reported results when the
parameters of the underlying problem are appropriately adjusted. As
an illustration, we formulate the problem of target tracking in clutter
within the proposed framework and show that the resulting filter is
competitive with several classical nonlinear methods.

The remainder of the paper is organized as follows. In Section II we
describe the proposed modeling and survey some related work. The
recursive LMMSE algorithm is derived in Section III. An application
to target tracking in clutter, followed by a numerical study, is presented
in Section IV. Concluding remarks are given in Section V.

II. SYSTEM MODEL AND RELATED WORK

We consider the dynamical system

xk+1 =Akxk +Bkuk + Ckwk (1a)

yk =Hkxk +Gkvk + Fkx̂k−1, (1b)

where xk ∈ R
n and yk ∈ R

m are, respectively, the state and mea-
surement vectors at time k. The processes {wk} and {vk} constitute
zero-mean unity-covariance strictly white sequences, and x0 is a
random vector (RV) with mean x̄0 and second-order moment P0.

We consider two variants for the modeling of uk. In the first case,
uk is a known deterministic input. However, because in some cases uk

serves as a closed loop control signal, it is common practice to let it
depend on the most recent estimate of the state. Thus, in the second
variant we set uk = x̂k, where x̂k is the LMMSE estimate of xk using

the measurement history Yk
Δ
= {y1, . . . , yk}.

Likewise, the term x̂k−1 in the measurement equation is the
LMMSE estimate of xk−1 based on the measurement history Yk−1.
Affecting the measurement at time k, the term Fkx̂k−1 can be used
to represent the fact that observations are not taken in the entire
space, but, rather, in a small validation window, set about the predicted
measurement.
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The system mode, Mk
Δ
= {Ak, Bk, Ck,Hk, Gk, Fk}, is a strictly

white random process with known distribution. The quantities {wk},
{vk}, {Mk}, and x0 are assumed to be independent.

We seek to obtain the LMMSE estimate x̂k+1 using the measure-
ments Yk+1. It will be shown in the sequel that, in our setting, x̂k+1

conveniently possesses the recursive form

x̂k+1 = Lkx̂k +Kkyk+1 + Jkuk (2)

thus avoiding the need to store the entire measurement sequence.
When uk = x̂k, the terms Lkx̂k and Jkx̂k in (2) may be grouped
together.

Note that the described problem does not require the system mode
to assume values in a discrete domain as opposed to, e.g., [2], [3],
[8]. In addition, the above formulation allows evolution not only of
the entries of the mode matrices, but also of their dimensions [10].
This observation allows treatment of problems that, to the best of
our knowledge, have not been previously considered in the context of
LMMSE algorithms. One such example is given in Section IV.

For the setting without feedback terms, several variants and special
cases of the presented problem have been considered in the past.
Independent measurement faults were treated, in the LMMSE sense,
in [2]. De Koning [7] considered a more general case of independently
switching modes where, however, the mode elements are assumed
uncorrelated, and Costa [8] developed, by means of state augmen-
tation, a recursive LMMSE filter for systems with discrete modes
obeying Markov dynamics. Additional contributions include [3], that
considered correlated faults, [11], that allowed correlations between
subsequent fault variables, and [4], that proposed an LMMSE filter for
the static multiple model problem [12]. Related nonlinear solutions
were proposed in [5], [6], [13] and references therein.

Besides the novel introduction of the feedback terms, this paper
contains several additional contributions. First, we derive a recursive
LMMSE algorithm without assuming uncorrelatedness of the mode
elements, as done in [7]. This assumption precludes the utilization
of the algorithm of [7] even for the simple problem of uncertain
observations where measurement noise has a higher variance when
faults occur, not to mention more involved settings, such as tracking
in clutter. In addition, our algorithm is derived without state augmen-
tation and without assuming discrete modes, as done in [8]. Finally,
the approach allows a broader class of problem to be formulated
within a single state-space model. Specifically, the new feedback
terms allow the application of the idea to the problem of tracking in
clutter.

III. LINEAR OPTIMAL RECURSIVE ESTIMATION

We begin the derivation with deterministic uk. The stochastic case
is treated in Section III-E.

Let Yk be the RV obtained by concatenating the elements of Yk. We
derive the result using the following lemma, which follows from [14,
p. 190] and the linearity of the MMSE estimator in the Gaussian case.

Lemma: Let x, y and z be RVs and let x̂(z) and x̂(y, z) denote,
respectively, the LMMSE estimates of x using z, and using both y and
z. Let ŷ(z) be the LMMSE estimate of y using z. Then

x̂(y, z) = x̂(z) + ΓxỹΓ
−1
ỹỹ ỹ, (3)

where ỹ = y − ŷ(z) and Γab is the cross-covariance matrix between
the RVs a and b.

Letting z
Δ
= Yk, y

Δ
= yk+1 and using the lemma, the LMMSE

estimate of xk+1 using Yk+1 is

x̂k+1 = x̂−
k+1 + Γxk+1ỹk+1

Γ−1
ỹk+1ỹk+1

ỹk+1 (4)

where x̂−
k+1 is the LMMSE estimate of xk+1 using Yk, ỹk+1

Δ
=

yk+1 − ŷ−
k+1, and ŷ−

k+1 is the LMMSE estimate of yk+1 using Yk.
If Γỹk+1ỹk+1

is singular, (4) still holds with the inverse replaced by
the Moore-Penrose pseudo-inverse. It is easily verified that

x̂−
k+1 =E[Ak]x̂k + E[Bk]uk (5)

ŷ−
k+1 =E[Hk+1]x̂

−
k+1 + E[Fk+1]x̂k

= (E[Hk+1]E[Ak] + E[Fk+1]) x̂k + E[Hk+1]E[Bk]uk. (6)

Plugging (5) in (4) we identify the desired matrix coefficients Kk, Lk,
and Jk of (2) as follows:

Kk =Γxk+1ỹk+1
Γ−1
ỹk+1ỹk+1

(7)

Lk = (I −KkE[Hk+1])E[Ak]−KkE[Fk+1] (8)

Jk = (I −KkE[Hk+1])E[Bk]. (9)

We now compute the covariance terms Γxk+1ỹk+1
and Γỹk+1ỹk+1

.

A. Computation of Γxk+1ỹk+1

Since ŷ−
k+1 is unbiased, and using (1b) and (6)

Γxk+1ỹk+1
=E

[
xk+1

(
yk+1 − ŷ−

k+1

)�]

=E

[
xk+1(Hk+1xk+1+Gk+1vk+1 + Fk+1x̂k)

�]
− E

[
xk+1 ((E[Hk+1]E[Ak] + E[Fk+1]) x̂k)

�]
− E

[
xk+1 (E[Hk+1]E[Bk]uk)

�] . (10)

Using the independence of xk+1 and vk+1, and canceling out identical
terms, (10) becomes

Γxk+1ỹk+1
=E

[
xk+1x

�
k+1

]
E

[
H�

k+1

]
−E

[
xk+1x̂

�
k

]
E

[
A�

k

]
E

[
H�

k+1

]
− E[xk+1]u

�
k E

[
B�

k

]
E

[
H�

k+1

]
. (11)

Before proceeding, we define Σk
Δ
= E[xkx

�
k ], Δk

Δ
= uku

�
k and, in

addition

Λk
Δ
=E

[
x̂kx̂

�
k

]
= E

[
x̂kx

�
k

]
(12)

Υk
Δ
=E[xk]u

�
k = E[x̂k]u

�
k (13)

where the RHS of (12) and (13) follow from the orthogonality princi-
ple and from the unbiasedness of x̂k, respectively. Note that Σk, Λk,
and Δk are symmetric.

Using the independence of x̂k and wk

E

[
xk+1x̂

�
k

]
=E

[
(Akxk +Bkuk + Ckwk)x̂

�
k

]
=E[Ak]Λk + E[Bk]Υ

�
k (14)

which yields for (11)

Γxk+1ỹk+1
=
(
Σk+1 −

(
E[Ak]Λk + E[Bk]Υ

�
k

)
E

[
A�

k

]
−E[xk+1]u

�
k E

[
B�

k

])
E

[
H�

k+1

]
. (15)

From (1a), we have

E[xk+1] =E[Akxk +Bkuk + Ckwk]

=E[Ak]E[xk] + E[Bk]uk (16)
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which, when substituted in (15), leads to

Γxk+1ỹk+1
=
(
Σk+1 −

(
E[Ak]

(
ΛkE

[
A�

k

]
+ΥkE

[
B�

k

])
+ E[Bk]

(
Υ�

k E

[
A�

k

]
+ΔkE

[
B�

k

])))
E

[
H�

k+1

]
. (17)

B. Computation of Γỹk+1ỹk+1

Since ŷ−
k+1 is the LMMSE estimate of yk+1 using Yk, ỹk+1 is

orthogonal to ŷ−
k+1 and, using (6)

Γỹk+1ỹk+1

= E

[(
yk+1 − ŷ−

k+1

)
y�
k+1

]
= E

[
yk+1y

�
k+1

]
− E

[
ŷ−
k+1y

�
k+1

]
= E

[
yk+1y

�
k+1

]
−(E[Hk+1]E[Ak]+ E[Fk+1])E

[
x̂ky

�
k+1

]
− E[Hk+1]E[Bk]ukE

[
y�
k+1

]
. (18)

Using (1b) and the independence of {x̂k, xk+1}, {Hk+1, Gk+1,
Fk+1} and vk+1, we have

E

[
x̂ky

�
k+1

]
=E

[
x̂k(Hk+1xk+1 + Fk+1x̂k)

�]
=E

[
x̂kx

�
k+1

]
E

[
H�

k+1

]
+ΛkE

[
F�
k+1

]
(19)

which, using (14), becomes

E

[
x̂ky

�
k+1

]
= Λk

(
E

[
A�

k

]
E

[
H�

k+1

]
+ E

[
F�
k+1

])
+ ΥkE

[
B�

k

]
E

[
H�

k+1

]
. (20)

Due to the independence of {xk+1, x̂k}, vk+1, and {Hk+1, Gk+1}

E

[
yk+1y

�
k+1

]
= E

[
Hk+1xk+1x

�
k+1H

�
k+1

]
+ E

[
Gk+1vk+1v

�
k+1G

�
k+1

]
+ E

[
Fk+1x̂kx̂

�
k F

�
k+1

]
+ E

[
Hk+1xk+1x̂

�
k F

�
k+1

]
+ E

[
Fk+1x̂kx

�
k+1H

�
k+1

]
. (21)

Consider the last summand. From the smoothing property of the
conditional expectation

E

[
Fk+1x̂kx

�
k+1H

�
k+1

]
=E

[
E

[
Fk+1x̂kx

�
k+1H

�
k+1 | Fk+1,Hk+1

]]
=E

[
Fk+1E

[
x̂kx

�
k+1

]
H�

k+1

]
(22)

where we utilized the independence of {Hk+1, Fk+1} and {xk+1, x̂k}.
Similarly, since E[xk+1x

�
k+1] = Σk+1, E[vk+1v

�
k+1] = I , and

E[x̂kx̂
�
k ] = Λk, we obtain

E

[
Hk+1xk+1x

�
k+1H

�
k+1

]
=E

[
Hk+1Σk+1H

�
k+1

]
(23)

E

[
Gk+1vk+1v

�
k+1G

�
k+1

]
=E

[
Gk+1G

�
k+1

]
(24)

E

[
Fk+1x̂kx̂

�
k F

�
k+1

]
=E

[
Fk+1ΛkF

�
k+1

]
. (25)

For future reference, we also note that

E

[
Akxkx

�
k A

�
k

]
=E

[
AkΣkA

�
k

]
(26)

E

[
Akxku

�
k B

�
k

]
=E

[
AkΥkB

�
k

]
(27)

E

[
Bkuku

�
k B

�
k

]
=E

[
BkΔkB

�
k

]
(28)

E

[
Ckwkw

�
k C�

k

]
=E

[
CkC

�
k

]
. (29)

Substituting (14) in (22), and using (22)–(25) in (21),

E

[
yk+1y

�
k+1

]
=E

[
Hk+1Σk+1H

�
k+1

]
+ E

[
Gk+1G

�
k+1

]
+ E

[
Fk+1ΛkF

�
k+1

]
+ E

[
Hk+1

(
E[Ak]Λk + E[Bk]Υ

�
k

)
F�
k+1

]
+ E

[
Fk+1

(
ΛkE

[
A�

k

]
+ΥkE

[
B�

k

])
H�

k+1

]
. (30)

In addition, we obtain, in a straightforward manner

E[yk+1] = (E[Hk+1]E[Ak] + E[Fk+1])E[xk] + E[Hk+1]E[Bk]uk.
(31)

Using (23), (24), and (25) in (30), and substituting (20), (30), and (31)
in (18), we finally obtain

Γỹk+1ỹk+1
=E

[
Hk+1Σk+1H

�
k+1

]
+ E

[
Gk+1G

�
k+1

]
+ E

[
Fk+1ΛkF

�
k+1

]
− E[Fk+1]ΛkE[F

�
k+1]

− E[Hk+1]E[Ak]ΛkE

[
A�

k

]
E

[
H�

k+1

]
+ E

[
Hk+1

(
E[Ak]Λk + E[Bk]Υ

�
k

)
F�
k+1

]
+ E

[
Fk+1

(
ΛkE

[
A�

k

]
+ΥkE

[
B�

k

])
H�

k+1

]
− E[Hk+1]E[Ak]ΛkE

[
F�
k+1

]
− E[Fk+1]ΛkE

[
A�

k

]
E

[
H�

k+1

]
− E[Hk+1]E[Ak]ΥkE

[
B�

k

]
E

[
H�

k+1

]
− E[Fk+1]ΥkE

[
B�

k

]
E

[
H�

k+1

]
− E[Hk+1]E[Bk]ukE

[
y�
k+1

]
. (32)

Notice, that a sufficient condition for the nonsingularity of Γỹk+1ỹk+1

is E[Gk+1G
�
k+1] � 0. To see this, recall that, by definition, Γỹk+1ỹk+1

is positive semi-definite for any choice of E[Gk+1G
�
k+1] and, in

particular, for Gk+1 = 0. But this means that the matrix on the
RHS of (32) minus E[Gk+1G

�
k+1] is positive semi-definite, rendering

E[Gk+1G
�
k+1] � 0 a sufficient condition for the non-singularity of

Γỹk+1ỹk+1
.

C. Computation of the Second-Order Moments

Utilizing the independence of xk, wk and {Ak, Bk, Ck}, and
(26)–(29), Σk+1 is given by

Σk+1=E

[
xk+1x

�
k+1

]
=E

[
(Akxk+Bkuk+Ckwk)(Akxk+Bkuk + Ckwk)

�]
=E

[
AkΣkA

�
k

]
+ E

[
AkΥkB

�
k

]
+ E

[
BkΥ

�
k A

�
k

]
+ E

[
BkΔkB

�
k

]
+ E

[
CkC

�
k

]
. (33)

Next, consider Λk+1. Direct computation yields:

Λk+1 =E

[
x̂k+1x

�
k+1

]
= (Lk +KkE[Fk+1])E

[
x̂kx

�
k+1

]
+KkE[Hk+1]Σk+1 + JkukE

[
x�
k+1

]
. (34)

Using (14), the latter becomes

Λk+1 = (Lk +KkE[Fk+1])
(
ΛkE

[
A�

k

]
+ΥkE

[
B�

k

])
+ Jk

(
Υ�

k E

[
A�

k

]
+ΔkE

[
B�

k

])
+KkE[Hk+1]Σk+1. (35)

Finally, Υk+1 = E[xk+1]u
�
k+1. Note that Δk is known for all k.
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D. Algorithm Summary

a) Initialization: x̂0 = x̄0, Σ0 = P0 + x̄0x̄
�
0 , Λ0 = x̄0x̄

�
0 , Υ0 =

x̄0u
�
0 , Δ0 = u0u

�
0 .

b) Recursion: For k = 1, 2, . . . perform the routine of Alg. 1.

Algorithm 1

Input: yk+1, uk+1, x̂k, E[xk], Σk, Λk, Υk, Δk

1: Compute E[Ak], E[Bk], E[CkC
�
k ], E[AkΣkA

�
k ],

E[AkΥkB
�
k ], and E[BkΔkB

�
k ].

2: Compute E[xk+1] and Σk+1 using Eqs. (16) and (33).
3: Compute E[Hk+1], E[Gk+1G

�
k+1], E[Fk+1],

E[Fk+1ΛkF
�
k+1], E[Hk+1Σk+1H

�
k+1], and

E[Hk+1(E[Ak]Λk + E[Bk]Υ
�
k )F

�
k+1].

4: Compute Γxk+1ỹk+1
and Γỹk+1ỹk+1

using Eqs. (17) and
(32).

5: Compute Kk, Lk, and Jk using Eqs. (7), (8), and (9), and
x̂k+1 using Eq. (2).

6: Compute Λk+1 using Eq. (35) and Υk+1 by plugging
E[xk+1] into (13).

Output: x̂k+1, E[xk+1], Σk+1, Λk+1, Υk+1

Since the distribution of Mk is known, the expectations of steps 1 and
3 of Alg. 1 may be calculated by, e.g., direct summations in case of
discrete modes. In some cases, as demonstrated in Section IV, closed
form expressions exist for the above expectations.

We note that the standard KF for a system with no inputs should
be obtained when {Mk} is a deterministic sequence with Bk = 0,
Fk = 0. In this setting we have

Γxk+1ỹk+1
=
(
Σk+1 −AkΛkA

�
k

)
H�

k+1

and

Γỹk+1ỹk+1
= Hk+1

(
Σk+1 −AkΛkA

�
k

)
H�

k+1 +Gk+1G
�
k+1.

Substituting these in (4) we indeed obtain the standard KF in the form
where the time and measurement updates are combined together. The
error covariances follow in a similar manner.

E. Random Inputs

In the second variant of (1a), in which uk = x̂k, it turns out that the
roles played by Ak and Bk are identical. Specifically, after replacing
uk with x̂k, at each step of the derivation of Section III, Ak and Bk

are multiplied by the same quantities. Thus, the filter for the modified
problem is obtained from the one described in Alg. 1 by replacing Ak

with Ak +Bk and nullifying uk and Υk. An alternative derivation,
based on the orthogonality principle, may be found in [15].

IV. APPLICATION TO TARGET TRACKING IN CLUTTER

In this section we demonstrate the proposed concept by casting the
classical problem of tracking in clutter within our formulation, and
applying the LMMSE filter of Section III.

A. System and Clutter Models

Consider a single target obeying a linear model. Setting Ak = A,
Bk = 0, and Ck = C in (1a)

xk+1 = Axk + Cwk. (36)

Here A and C are deterministic matrices, accounting for the state
dynamics and process noise covariance, respectively, and {wk} is a
scalar process noise sequence. The target state is observed via the the
equation

ytrue
k = Hnomxk +Gnomvtruek (37)

where vtruek represents measurement noise. In addition, at each time,
a number of clutter detections are obtained. These will be denoted
as {ycl

k,i}
N−1

i=1
, where N is the total number of detections. Clutter

measurements do not carry any information about the target of interest.
They are, however, indistinguishable from true detections in the sense
that they carry information of the same type (say, position). At each
time, the clutter measurements are assumed to be independent of each
other, of the clutter measurements at other times, and of the true
state and observation. In addition, we assume that they are uniformly
distributed in space.

To correctly model the distribution of the clutter detections, we note
that, typically, at each scan, the sensor initiates a validation window
centered about the next predicted target detection, and the algorithm
processes only those measurements obtained within the window. Since
the clutter detections are uniformly distributed in space, they are also
uniformly distributed within the validation window.

We define the measurement vector yk to be the concatenation of
all measurements from time k, N − 1 of which correspond to clutter,
and one originating from the true target. The location of the true
measurement within this concatenated vector is, of course, unknown
to the algorithm.

This setting can be modeled using (1b) by letting the mode Mk be
distributed as

Mk= {Hk, Gk, Fk}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
Hnom

0
...
0

⎞
⎟⎟⎠ ,diag

⎛
⎜⎜⎝
Gnom

Gcl

...
Gcl

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
HnomA

...
HnomA

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

, w.p. 1
N

...
...

...⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0
...
0

Hnom

⎞
⎟⎟⎠ ,diag

⎛
⎜⎜⎝

Gcl

...
Gcl

Gnom

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
HnomA

...
HnomA

0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

, w.p. 1
N

(38)

where Gcl is the square-root of the covariance matrix associated with
the clutter.

For example, the first realization of {Hk, Gk, Fk} in (38) corre-
sponds to the scenario in which the first of the N observations is
the true target measurement, ytrue

k , generated according to (37), while
the other N − 1 measurements are clutter, each of which is generated
according to

ycl
k,i = HnomAx̂k−1 +Gclv

cl
k,i, i = 2, . . . , N. (39)

Here, HnomAx̂k−1 is the predicted true measurement at time k, which
is also the center of the validation window, so that clutter measure-
ments at time k are uniformly distributed around this quantity. Namely,
vclk,i has a uniform distribution. The overall number of measurements
in the validation window, N , is assumed to be known, but may vary in
time. Thus, the dimensions of Hk, Gk, and Fk may depend on k.

It is readily observed that the matrices {Hk, Gk, Fk} are correlated
in this setting. This renders the approach of [7] inapplicable in the
current scenario. Furthermore, it can be seen that without the feedback
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term in the measurement equation, it is impossible to account for the
fact that clutter is uniformly distributed in a window centered about
the predicted measurement. In fact, any linear method disregarding
this term, such as [7], [8], must assume that clutter measurements are
distributed about 0.

Notice that we assumed, for simplicity, that the true measurement is
always present in the validation window. To account for the possibility
that the true measurement does not fall in the validation window, the
option

{Hk, Gk, Fk} = {0, IN ⊗Gcl,1N ⊗HnomA} (40)

needs to be added to the set of possible realizations in (38). Here, ⊗
stands for the Kronecker product, 1N is an N × 1 vector comprising
all ones, and IN is the N ×N identity matrix. The probability of this
outcome is (1− PD)(1− PG) where PD is the probabilty of target
detection, assumed known, and PG is the probability that, upon target
detection, the true measurement falls in the validation window. This
parameter is defined by the user and, typically, affects the window
size as discussed in the sequel. Note that, when no measurements are
available, N = 0, and (2) becomes (in the absence of uk) x̂k+1 =
Lkx̂k, which corresponds to a simple prediction (time update) without
consecutive measurement update, as expected.

B. Matrix Computations

To invoke the algorithm presented in Section III we need to compute
the expectations of Steps 1 and 3 of Alg. 1. Although these may be
evaluated numerically, via direct summations, in the present example
closed-form expressions exist, as we show next for the simple setting in
which the true measurement is always present in the validation window
(extensions are straightforward.)

As the matrices of the dynamics equation are determinis-
tic, E[Ak] = A, E[Bk] = 0, E[CkC

�
k ] = CC�, E[AkΥkB

�
k ] = 0,

E[BkΔkB
�
k ] = 0, and E[AkΣkA

�
k ] = AΣkA

�. Also, according to
the distribution defined in (38),

E[Hk+1] =
1

N
1N ⊗Hnom (41)

E[Fk+1] =
N − 1

N
1N ⊗HnomA. (42)

The remaining terms read

E

[
Hk+1Σk+1H

�
k+1

]
=

1

N
IN ⊗HnomΣk+1H

�
nom (43)

E

[
Gk+1G

�
k+1

]
=

1

N
IN ⊗

(
GnomG�

nom

+(N − 1)GclG
�
cl

)
(44)

E

[
Fk+1ΛkF

�
k+1

]
=Ξ⊗

(
HnomAΛkA

�H�
nom

)
(45)

where

Ξ =

{
1
N

(
(N − 2)1N1�

N + IN
)
, N > 1

0, N = 1.
(46)

Finally,

E

[
Hk+1

(
E[Ak]Λk + E[Bk]Υ

�
k

)
F�
k+1

]

=
1

N

(
1N1�

N − IN
)
⊗
(
HnomAΛkA

�H�
nom

)
. (47)

The spatial distribution of clutter is uniform in the validation win-
dow, whose size determines GclG

�
cl .

C. Discussion

It is easy to see that, in the present case, Γỹk+1ỹk+1
= IN ⊗D

where

D =
1

N
HnomAΛkA

�H�
nom +

1

N
HnomΣk+1H

�
nom

+
1

N
GnomG�

nom +
N − 1

N
GclG

�
cl .

Moreover

Γxk+1ỹk+1
=(Σk+1 −AΛkA

�)E
[
H�

k+1

]

=
1

N
(Σk+1 −AΛkA

�)
(
H�

nom · · ·H�
nom

)�
(48)

and

Kk =Γxk+1ỹk+1
Γ−1
ỹk+1ỹk+1

=
1

N
1�
N ⊗

(
(Σk+1 −AΛkA

�)H�
nomD−1

)
. (49)

Since yk+1 is a concatenation of all the observations from time k + 1,
the product Kkyk+1 in (2) is the average of these measurements,
pre-multiplied by (Σk+1 −AΛkA

�)H�
nomD−1. Consequently, the

LMMSE estimator for tracking a target in clutter is a KF-like al-
gorithm, operating on the average of all detections in the validation
window. In this respect, its mode of operation resembles classical
methods. For example, the probabilistic data association (PDA) [16]
method implements a KF driven by the weighted average of all
measurements in the window, and the nearest neighbor (NN) filter [17]
is a KF driven by the measurement nearest to the prediction assigning
it a weight of 1 and assigning 0 to the rest of the measurements.

D. Numerical Study

We consider a one-dimensional tracking scenario, in which the state
comprises position and velocity information, xk = (pk vk)

�. Starting
at x0 ∼ N (x̄0, P0) with x̄0 = (0 0)� and P0 = 30I2, the target is

simulated for 400 time units using (36) with A =
(

1 0.2
0 0.95

)
and C =

(0.25 0.5)�. The process and measurement noises are taken to be
Gaussian.

The true measurement is generated using (37) with Hnom = (1 0)
and Gnom =

√
30. The target is detected with probability PD = 0.95

and the probability that the true observation falls in the validation
window is taken to be PG = 0.99. A validation window is set about the
predicted measurement position. Its size, d, is determined to comply
with PG (see [17, p. 130] for details). Once the window is determined,
the clutter variance of (39) is GclG

�
cl = d2/12.

The derived algorithm is compared with NN and PDA filters, that
are equipped with the same windowing logic and parameters. All
algorithms are initialized with x̂0 = x̄0 and the initial error covariance
matrix is taken to be P0.

When dealing with tracking in clutter, using the MSE as the only
performance measure may result in misleading conclusions, since,
eventually, the estimate will draw away from the true measurement
and follow the clutter, and the errors will become meaninglessly large.

We thus use two measures of performance to evaluate the algo-
rithms. The first is the time until the target is lost, defined as the
third consecutive time when the measurement of a detected target falls
outside the validation window. The second measure is the root MSE
(RMSE) calculated over the time interval until the first of the three
algorithms loses track.
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Fig. 1. Position RMSE (left) and track loss time (right) versus clutter density.

We test the algorithms at a range of clutter densities. We define the
clutter density ρ to be the average number of clutter measurements
falling in an interval of one standard deviation of the (true) measure-
ment noise. Averaged over 1000 independent Monte Carlo runs, the
average position RMSE and track loss times are plotted, versus ρ, in
Fig. 1.

It is readily seen that the LMMSE filter attains competitive perfor-
mance relatively to the nonlinear algorithms. Specifically, for heavy
clutter regimes it maintains longest track loss times. It is not very
surprising that the errors of PDA are better, since these are calculated
before the first of the three algorithms has lost track (NN in all
cases). During this period the PDA performs a more efficient, nonlinear
manipulation on the measurements. However, for high clutter rates, it
is probable that clutter measurements will be assigned higher weights
than the true detection, eventually leading to a track loss. In this case, it
is better to simply average the measurements, as the linear filter does.

V. CONCLUSION

We proposed a new formulation of JLS, where the dynamics and
measurement equations are allowed to depend on previous estimates
of the state representing closed-loop control input and measurement
validation window. We derived an LMMSE recursive algorithm for
this setting, and illustrated the approach in the context of tracking in
clutter. In this case, our filter demonstrates competitive performance,
when compared with classical, nonlinear methods.

ACKNOWLEDGMENT

The authors would like to thank Dr. Omer Bobrowski for fruitful
discussions on the earlier versions of the paper.

REFERENCES

[1] E.-K. Boukas and Z.-K. Liu, Deterministic and Stochastic Time-Delay
Systems. Boston, MA: Birkhäuser, 2002.

[2] N. Nahi, “Optimal recursive estimation with uncertain observation,” IEEE
Trans. Inf. Theory, vol. IT-15, no. 4, pp. 457–462, 1969.

[3] M. Hadidi and S. Schwartz, “Linear recursive state estimators under
uncertain observations,” IEEE Trans. Autom. Control, vol. AC-24, no. 6,
pp. 944–948, Dec. 1979.

[4] N. Nahi and E. Knobbe, “Optimal linear recursive estimation with uncer-
tain system parameters,” IEEE Trans. Autom. Control, vol. AC-21, no. 2,
pp. 263–266, 1976.

[5] G. Ackerson and K. Fu, “On state estimation in switching environ-
ments,” IEEE Trans. Autom. Control, vol. AC-15, no. 1, pp. 10–17,
1970.

[6] H. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm
for systems with Markovian switching coefficients,” IEEE Trans. Autom.
Control, vol. 33, no. 8, pp. 780–783, 1988.

[7] W. De Koning, “Optimal estimation of linear discrete-time systems
with stochastic parameters,” Automatica, vol. 20, no. 1, pp. 113–115,
1984.

[8] O. Costa, “Linear minimum mean square error estimation for discrete-
time Markovian jump linear systems,” IEEE Trans. Autom. Control,
vol. 39, no. 8, pp. 1685–1689, 1994.

[9] T. Michaeli, D. Sigalov, and Y. Eldar, “Partially linear estimation with
application to sparse signal recovery from measurement pairs,” IEEE
Trans. Signal Process., vol. 60, no. 5, pp. 2125–2137, 2012.

[10] T. Yuan, Y. Bar-Shalom, P. Willett, E. Mozeson, S. Pollak, and
D. Hardiman, “A multiple IMM estimation approach with unbiased mix-
ing for thrusting projectiles,” IEEE Trans. Aerosp. Electron. Syst., vol. 48,
no. 4, pp. 3250–3267, 2012.

[11] R. Jackson and D. Murthy, “Optimal linear estimation with uncertain ob-
servations (Corresp.),” IEEE Trans. Inf. Theory, vol. IT-22, no. 3, pp. 376–
378, 1976.

[12] D. Magill, “Optimal adaptive estimation of sampled stochastic pro-
cesses,” IEEE Trans. Autom. Control, vol. AC-10, no. 4, pp. 434–439,
1965.

[13] D. Sigalov and Y. Oshman, “State estimation in hybrid systems with a
bounded number of mode transitions,” in Proc. 13th Int. Conf. Informa-
tion Fusion, 2010.

[14] J. Mendel, Lessons in Digital Estimation Theory: Prentice-Hall, Inc.,
1986.

[15] D. Sigalov, T. Michaeli, and Y. Oshman, “Linear optimal state estimation
in systems with independent mode transitions,” in Proc. 50th IEEE Conf.
Decision and Control, 2011.

[16] Y. Bar-Shalom and E. Tse, “Tracking in a cluttered environment with
probabilistic data association,” Automatica, vol. 11, no. 5, pp. 451–460,
1975.

[17] Y. Bar-Shalom and X. Li, Multitarget-Multisensor Tracking: Principles
and Techniques. Storrs, CT: YBS Publishing, 1995.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


