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Abstract. We address the problem of estimating a random vector X
from two sets of measurements Y and Z, such that the estimator is linear
in Y . We show that the partially linear minimum mean squared error
(PLMMSE) estimator requires knowing only the second-order moments
of X and Y , making it of potential interest in various applications. We
demonstrate the utility of PLMMSE estimation in recovering a signal,
which is sparse in a unitary dictionary, from noisy observations of it
and of a filtered version of it. We apply the method to the problem
of image enhancement from blurred/noisy image pairs. In this setting
the PLMMSE estimator performs better than denoising or deblurring
alone, compared to state-of-the-art algorithms. Its performance is slightly
worse than joint denoising/deblurring methods, but it runs an order of
magnitude faster.

Keywords: Bayesian estimation, minimum mean squared error, linear
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1 Introduction

Bayesian estimation is concerned with the prediction of a random quantity X
based on a set of observations Y , which are statistically related to X. It is well
known that the estimator minimizing the mean squared error (MSE) is given by
the conditional expectation X̂ = E[X|Y ]. There are various scenarios, however,
in which the minimal MSE (MMSE) estimator cannot be used. This can either
be due to implementation constraints, because of the fact that no closed form
expression for E[X|Y ] exists, or due to lack of complete knowledge of the joint
distribution of X and Y . In these cases, one often resorts to linear estimation.
The appeal of the linear MMSE (LMMSE) estimator is rooted in the fact that it
possesses an easily implementable closed form expression, which merely requires
knowledge of the joint first- and second-order moments of X and Y .

For example, the amount of computation required for calculating the MMSE
estimate of a jump-Markov Gaussian random process from its noisy version
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grows exponentially in time. By contrast, the LMMSE estimator in this setting
possesses a simple recursive implementation, similar to the Kalman filter [1]. A
similar problem arises in the area of sparse representations, in which the use
of Bernoulli-Gaussian and Laplacian priors is very common. The complexity
of calculating the MMSE estimator under the former prior is exponential in the
vector’s dimension, calling for approximate solutions [2, 3]. The MMSE estimator
under the latter prior does not possess a closed form expression [4], which has
motivated the use of alternative estimation strategies such as the maximum a-
posteriori (MAP) method.

In practical situations, the reasons for not using the MMSE estimator may
only apply to a subset of the measurements. Then, it may be desirable to con-
struct an estimator that is linear in part of the measurements and nonlinear in
the rest. One such scenario arises when estimating a sparsely representable vector
X from two sets of measurements Y and Z, one blurred and one noisy. Indeed, as
we show in this paper, when working with unitary dictionaries, the MMSE esti-
mate E[X|Z] from the noisy measurements alone possesses an easy-to-implement
closed form solution. However the complexity of computing the MMSE estimate
E[X|Y,Z] from both sets of measurements is exponential. In this setting, the
PLMMSE method, which is linear in Y , is computationally cheap and often
comes close to the MMSE solution E[X|Y, Z] in terms of performance.

Partially linear estimation was studied in the statistical literature in the
context of regression [5]. In this line of research, it is assumed that the conditional
expectation g(y, z) = E[X|Y = y, Z = z] is linear in y. The goal, then, is
to approximate g(y, z) from a set of examples {xi, yi, zi} drawn independently
from the joint distribution of X, Y and Z. In this paper, our goal is to derive
the partially linear MMSE (PLMMSE) estimator. Namely, we do not make any
assumptions on the structure of the MMSE estimate E[X|Y, Z], but rather look
for the estimator that minimizes the MSE among all functions g(Y,Z) that are
linear in Y .

Due to space limitations, we state here the main results without their proofs,
which can be found in [6].

2 Partially Linear Estimation

Suppose that X, Y and Z are random variables (RVs) taking values in RM ,
RN and RQ, respectively, such that X is the quantity to be estimated and Y
and Z are two sets of measurements thereof. We denote by ΓXX , ΓXY , the
auto-covariance of X and the cross-covariance of X and Y , respectively.

Our goal is to design a partially linear estimator of X based on Y and Z,
which has the form

X̂ = AY + b(Z). (1)

Here A is a deterministic matrix and b(z) is a vector-valued (Borel measurable)
function.
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Theorem 1. The MMSE estimator of the form (1) is given by

X̂ = ΓXWΓ †
WWW + E[X|Z], (2)

where W , Y − E[Y |Z].

Note that (2) is of the form of (1) with A = ΓXWΓ †
WW and b(Z) = E[X|Z]−

ΓXWΓ †
WWE[Y |Z]. As we show in [6], (2) can be equivalently written as

X̂ =
(
ΓXY − Γ X̂Z ŶZ

)(
Γ Y Y − Γ ŶZ ŶZ

)† (
Y − ŶZ

)
+ X̂Z , (3)

where X̂Z , E[X|Z] and ŶZ , E[Y |Z]. Therefore, all we need to know in order
to be able to compute the PLMMSE estimator (2) is the covariance matrix ΓXY ,
the conditional expectation E[X|Z] and the joint distribution of Y and Z.

The intuition behind (2) is similar to that arising in dynamic estimation
schemes, such as the Kalman filter. Specifically, we begin by constructing the
MMSE estimate E[X|Z] of X from Z. We then update it with the LMMSE
estimate of X based on the innovation W of Y with respect to E[X|Z].

One particularly interesting example is the case where X is observed through
two linear systems as (

Y
Z

)
=

(
H
G

)
X +

(
U
V

)
, (4)

where U and V are statistically independent. It is easily shown that in this
setting, the PLMMSE estimate reduces to

X̂ = AY + (I −HA)X̂Z , (5)

where I denotes the identity matrix and

A = CHT (HCHT + ΓUU )
† (6)

with C = ΓXX − Γ X̂ZX̂Z
.

3 Application to Sparse Approximations

Consider the situation in which X is known to be sparsely representable in a
unitary dictionary Ψ ∈ RM×M in the sense that

X = ΨA (7)

for some RV A that is sparse with high probability. More concretely, we assume,
as in [2, 3], a Bernoulli-Gaussian prior, so that the elements of A are given by

Ai = SiBi, i = 1, . . . ,M, (8)

where the RVs {Bi} and {Si} are statistically independent, Bi ∼ N (0, σ2
Bi
) and

P(Si = 1) = 1− P(Si = 0) = pi.
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Assume X is observed through two linear systems, as in (4), where H is an
arbitrary matrix, G is an orthogonal matrix satisfying GTG = α2I for some
α ̸= 0, and U and V are Gaussian RVs with ΓUU = σ2

UI and Γ V V = σ2
V I.

In this case the expression for the MMSE estimate E[X|Y,Z] comprises 2M

summands [2] rendering its computation prohibitively expensive even for modest
values of M . Various approaches have been devised to approximate this solution
by a small number of terms (see e.g., [2, 3] and references therein).

There are some special cases, however, in which the MMSE estimate possesses
a simple structure, which can be implemented efficiently. One such case is when
both the channel’s response and the dictionary over whichX is sparse correspond
to orthogonal matrices. As in our setting Ψ is unitary and G is orthogonal, this
implies that we can efficiently compute the MMSE estimate E[X|Z] ofX from Z.
Therefore, instead of resorting to schemes for approximating E[X|Y,Z], we can
employ the PLMMSE estimator of X based on Y and Z, which, in this situation,
possesses the simple closed form expression (5). This approach is particularly
effective when the SNR of the observation Y is much worse than that of Z, since
the MMSE estimate E[X|Y, Z] in this case is close to being partially linear in
Y . Such a setting is demonstrated in the sequel. We have the following result.

Theorem 2. The MMSE estimate of X of (7) given Z of (4) is

E[X|Z] = Ψ f̃

(
1

α
ΨTGTZ

)
, (9)

where f̃(z̃) = (f(z̃1), . . . , f(z̃M ))T , with

f(z̃i) =

ασ2
Bi

α2σ2
Bi

+σ2
V
pi N (z̃i; 0, α

2σ2
Bi

+ σ2
V ) z̃i

pi N (z̃i; 0, α2σ2
Bi

+ σ2
V ) + (1− pi)N (z̃i; 0, σ2

V )
. (10)

Here, N (α;µ, σ2) denotes the normal probability density function with mean µ
and variance σ2, evaluated at α.

Therefore, if, e.g., Ψ is a wavelet basis and G = I (so that α = 1), then
E[X|Z] can be efficiently computed by taking the wavelet transform of Z (mul-
tiplication by ΨT ), applying a scalar shrinkage function on each of the coefficients
(namely calculating f(z̃i) for the ith coefficient) and applying the inverse wavelet
transform (multiplication by Ψ) on the result.

Equipped with a closed form expression for E[X|Z], we can now compute the
terms needed for implementing the PLMMSE estimator (5). First, we note that

ΓXX = ΨΓAAΨ
T , (11)

where ΓAA is a diagonal matrix with (ΓAA)i,i = piσ
2
Bi
. Similarly,

Γ X̂ZX̂Z
= ΨCov(f̃(Z̃))ΨT , (12)

where Cov(f̃(Z̃)) is a diagonal matrix whose (i, i) element is βi = Var(f(Z̃i)).
This is due to the fact that the elements of Z̃ are statistically independent and
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the fact that the function f̃(·) operates element-wise on its argument. Hence,
the PLMMSE estimator is given by (5) with E[X|Z] of (9) and with the matrix

A = ΨCΨTHT
(
HΨCΨTHT + σ2

UI
)†

, (13)

where hereC = ΓAA−Cov(f̃(Z̃)) = diag(p1σ
2
B1

−β1, . . . , pMσ2
BM

−βM ). Observe
that there is generally no closed form expression for the scalars βi, rendering it
necessary to compute them numerically.

An important special case corresponds to the setting in which pi = p and
σ2
Bi

= σ2
B for every i. In this situation, we also have that βi = β for every i.

Furthermore,

ΓXX = Ψ
(
pσ2

BI
)
ΨT = pσ2

BI (14)

and

Γ X̂ZX̂Z
= Ψ(βI)ΨT = βI, (15)

so that A is simplified to

A = (pσ2
B − β)HT

(
(pσ2

B − β)HHT + σ2
UI

)†
. (16)

As can be seen, here A does not involve multiplication by Ψ or ΨT . Thus, if
H corresponds to a convolution operation, so does A, meaning that it can be
efficiently applied in the Fourier domain.

3.1 Image Deblurring with Blurred/Noisy Image Pairs

When taking photos in dim light using a hand-held camera, there is a tradeoff
between noise and motion blur, which can be controlled by tuning the shutter
speed. Using a long exposure time, the image typically comes out blurred due to
camera shake. On the other hand, with a short exposure time (and high camera
gain), the image is very noisy. In [7] it was demonstrated how a high quality
image can be constructed by properly processing two images of the same scene,
one blurred and one noisy.

We now show how the PLMMSE approach can be applied in this setting to
obtain plausible recoveries at a speed several orders of magnitude faster than
any other sparsity-based method. In our setting X, Y and Z correspond, respec-
tively, to the original, blurred (and slightly noisy) and noisy images. Thus, the
measurement model is that described by (4), where H corresponds to spatial
convolution with some blur kernel, G = I, and U and V correspond to white
Gaussian noise images with small and large variances respectively. We further
assume that the image X is sparse in some orthogonal wavelet basis Ψ , such
that it can be written as in (7) and (8).

As we have seen, in this setting, the PLMMSE estimator can be computed
in two stages. First, we calculate X̂Z = E[X|Z] by computing the wavelet trans-
form Z̃ = ΨTZ, applying the scalar shrinkage function (10) on each wavelet
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coefficient, and taking the inverse wavelet transform of the result. This stage re-
quires knowledge of the parameters {pi}, {σ2

Bi
} and σ2

V . To this end, we assume
that pi and σ2

Bi
are the same for wavelets coefficients at the same level. Namely,

all wavelet coefficients of Z at level ℓ correspond to independent draws from the
Gaussian mixture

fZ̃i
(z̃) = pℓN (z̃; 0, α2σ2

Bℓ + σ2
V ) + (1− p)N (z̃; 0, σ2

V ). (17)

Consequently, pℓ, σ2
Bℓ and σ2

V can be estimated by expectation maximization
(EM). In our experiments, we assumed that σ2

V is known.

In the second stage, the denoised image X̂Z needs to be combined with the
blurred image Y using (5) with A of (13). As discussed in Section 3, this can
be carried out very efficiently if pi = p and σ2

Bi
= σ2

B for all i. For the sake
of efficiency we therefore abandon the assumption that pi and σ2

Bi
vary across

wavelet levels and assume henceforth that all wavelet coefficients are independent
and identically distributed. In this case, A corresponds to the filter

A(ω) =
(σ2

A − β)H∗(ω)

(σ2
A − β)|H(ω)|2 + σ2

U

, (18)

where H(ω) is the frequency response of the blur kernel. Consequently, the final
PLMMSE estimate corresponds to the inverse Fourier transform of

X̂F
PLMMSE(ω) =

(σ2
A − β)H∗(ω)Y F(ω) + σ2

U X̂
F
Z(ω)

(σ2
A − β)|H(ω)|2 + σ2

U

, (19)

where Y F(ω) and X̂F
Z(ω) denote the Fourier transforms of Y and X̂Z , respec-

tively. In our experiment, we assumed that the blur H(ω) and noise variance σ2
U

are known. In practice, they can be estimated from Y and Z, as proposed in
[7]. This stage also requires knowing the scalars σ2

A = E[A2] and β = E[f2(z̃)],

which we estimate as σ̂2
A = 1

M

∑M
i=1 z̃

2
i − σ2

V and β̂ = 1
M

∑M
i=1 f

2(z̃i).
Fig. 1 demonstrates our approach on the 512× 512 Gold-hill image. In this

experiment, the blur corresponded to a Gaussian kernel with standard deviation
3.2. To model a situation in which the noise in Y is due only to quantization
errors, we chose σU = 1/

√
12 ≈ 0.3 and σV = 45. These parameters correspond

to a peak signal to noise ratio (PSNR) of 25.08dB for the blurred image and
15.07dB for the noisy image.

We used the orthogonal Symlet wavelet of order 4 and employed 10 EM
iterations to estimate pℓ and σ2

Bℓ in each wavelet level. The entire process takes
1.1 seconds on a Dual-Core 3GHz computer with un-optimized Matlab code. We
note that our approach can be viewed as a smart combination of Wiener filtering
for image debluring and wavelet thresholding for image denoising, which are
among the simplest and fastest methods available. Consequently, the running
time is at least an order of magnitude faster than any other sparsity-based
methods (see, e.g., comparisons in [2]).

As can be seen in Fig. 1, the quality of the recoveries corresponding to the
denoised image X̂Z and deblurred image X̂L

Y is rather poor with respect to the
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(a) (b) (c)

(d) (e) (f)

Fig. 1: Debluring with a blurred/noisy image pair using PLMMSE estimation
and RD [7]. (a) Blurred image Y (top left) and noisy image Z (bottom-right).
(b) LMMSE-deblurred image X̂L

Y (top-left) and MMSE-denoised image X̂Z

(bottom-right). (c) BM3D-deblurred image (top left) and BM3D-denoised image
(bottom-right). (d) Original image X. (e) PLMMSE estimate X̂PLMMSE from Y
and Z. (f) RD recovery.

state-of-the-art BM3D debnoising method [8] and BM3D debluring algorithm [9].
However, the quality of the joint estimate X̂PLMMSE surpasses each of these
techniques. The residual deconvolution (RD) method [7] for joint debluring and
denoising outperforms the PLMMSE method in terms of recovery error but the
visual differences are not prominent.

A quantitative comparison on several test images is given in Table 1. The
PSNR attained by the PLMMSE method is, on average, 0.3dB higher than
BM3D debluring, 0.4db higher than BM3D denoising, and 0.8dB lower than
RD. In terms of running times, however, our method is, on average, 11 times
faster than BM3D deblurring, 16 times faster than BM3D denoising and 18 times
faster than RD. Note that RD requires initialization with a denoised version of
Z, for which purpose we used the BM3D algorithm. Hence, the running times
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Table 1: Performance of deblurring/denoising on several images.
X̂Z X̂L

Y
BM3D
Denoise

BM3D
Deblur PLMMSE RD

Boat 25.39
/
0.83 23.45

/
0.06 27.85

/
13.52 28.40

/
10.23 28.05

/
0.88 29.22

/
15.31

Lena 26.93
/
0.73 24.59

/
0.03 29.47

/
13.22 30.58

/
8.90 30.58

/
0.81 31.37

/
15.19

Mandrill 21.40
/
0.64 20.59

/
0.06 22.72

/
13.58 21.78

/
9.57 22.58

/
0.72 23.30

/
15.58

Peppers 26.74
/
0.81 24.89

/
0.08 29.49

/
13.14 29.74

/
8.91 29.80

/
0.88 31.52

/
15.03

Mountain 19.23
/
0.95 17.69

/
0.09 20.11

/
15.24 18.45

/
11.12 20.03

/
1.05 20.42

/
17.47

Frog 23.23
/
0.94 22.35

/
0.16 24.00

/
16.07 24.40

/
13.37 24.69

/
1.09 24.69

/
21.14

Gold-hill 25.90
/
0.69 24.26

/
0.06 27.52

/
13.41 28.70

/
9.54 28.82

/
1.09 29.09

/
21.14

Average 24.12
/
0.81 22.55

/
0.08 25.88

/
14.03 26.01

/
10.23 26.31

/
0.89 27.09

/
16.19

reported in the last column of Table 1 include the running times of the BM3D
denoising method.

4 Conclusion

In this paper, we derived the PLMMSE estimator and showed that it depends
only on the joint second-order statistics of X and Y , rendering it applicable in a
wide variety of situations. We demonstrated the utility of our approach in sparse
signal recovery from a measurement pair. In the context of image enhancement
from blurred/noisy image pairs, we showed that PLMMSE estimation performs
close to state-of-the-art algorithms while running much faster.
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