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Abstract

Image restoration algorithms are typically evaluated by
some distortion measure (e.g. PSNR, SSIM, IFC, VIF) or
by human opinion scores that quantify perceived perceptual
quality. In this paper, we prove mathematically that dis-
tortion and perceptual quality are at odds with each other.
Specifically, we study the optimal probability for correctly
discriminating the outputs of an image restoration algo-
rithm from real images. We show that as the mean dis-
tortion decreases, this probability must increase (indicating
worse perceptual quality). As opposed to the common be-
lief, this result holds true for any distortion measure, and is
not only a problem of the PSNR or SSIM criteria. However,
as we show experimentally, for some measures it is less se-
vere (e.g. distance between VGG features). We also show
that generative-adversarial-nets (GANs) provide a princi-
pled way to approach the perception-distortion bound. This
constitutes theoretical support to their observed success in
low-level vision tasks. Based on our analysis, we propose
a new methodology for evaluating image restoration meth-
ods, and use it to perform an extensive comparison between
recent super-resolution algorithms.

1. Introduction
The last decades have seen continuous progress in image

restoration algorithms (e.g. for denoising, deblurring, super-
resolution) both in visual quality and in distortion measures
like peak signal-to-noise ratio (PSNR) and structural simi-
larity index (SSIM) [45]. However, in recent years, it seems
that the improvement in reconstruction accuracy is not al-
ways accompanied by an improvement in visual quality. In
fact, and perhaps counter-intuitively, algorithms that are su-
perior in terms of perceptual quality, are often inferior in
terms of e.g. PSNR and SSIM [22, 16, 6, 38, 51, 49]. This
phenomenon is commonly interpreted as a shortcoming of
the existing distortion measures [44], which fuels a constant
search for alternative “more perceptual” criteria.

In this paper, we offer a complementary explanation
for the apparent tradeoff between perceptual quality and
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Figure 1. The perception-distortion tradeoff. Image restoration
algorithms can be characterized by their average distortion and by
the perceptual quality of the images they produce. We show that
there exists a region in the perception-distortion plane which can-
not be attained, regardless of the algorithmic scheme. When in
proximity of this unattainable region, an algorithm can be poten-
tially improved only in terms of its distortion or in terms of its
perceptual quality, one at the expense of the other.

distortion measures. Specifically, we prove that there ex-
ists a region in the perception-distortion plane, which can-
not be attained regardless of the algorithmic scheme (see
Fig. 1). Furthermore, the boundary of this region is mono-
tone. Therefore, in its proximity, it is only possible to im-
prove either perceptual quality or distortion, one at the ex-
pense of the other. The perception-distortion tradeoff ex-
ists for all distortion measures, and is not only a problem
of the mean-square error (MSE) or SSIM criteria. How-
ever, for some measures, the tradeoff is weaker than others.
For example, we find empirically that the recently proposed
distance between deep-net features [16, 22] has a weaker
tradeoff with perceptual quality than MSE. This aligns with
the observation that this measure is “more perceptual” than
MSE.

Let us clarify the difference between distortion and per-
ceptual quality. The goal in image restoration is to estimate
an image x from its degraded version y (e.g. noisy, blurry,
etc.). Distortion refers to the dissimilarity between the re-
constructed image x̂ and the original image x. Perceptual



quality, on the other hand, refers only to the visual qual-
ity of x̂, regardless of its similarity to x. Namely, it is the
extent to which x̂ looks like a valid natural image. An in-
creasingly popular way of measuring perceptual quality is
by using real-vs.-fake user studies, which examine the abil-
ity of human observers to tell whether x̂ is real or the output
of an algorithm [15, 53, 39, 8, 6, 14, 54, 11] (similarly to
the idea underlying generative adversarial nets [10]). There-
fore, perceptual quality can be defined as the best possible
probability of success in such discrimination experiments,
which as we show, is proportional to the distance between
the distribution of x̂ and that of natural images.

Based on these definitions of perception and distortion,
we follow the logic of rate-distortion theory [4]. That is,
we seek to characterize the behavior of the best attainable
perceptual quality (minimal deviation from natural image
statistics) as a function of the maximal allowable average
distortion, for any estimator. This perception-distortion
function (wide curve in Fig. 1) separates between the attain-
able and unattainable regions in the perception-distortion
plane and thus describes the fundamental tradeoff between
perception and distortion. Our analysis shows that algo-
rithms cannot be simultaneously very accurate and produce
images that fool observers to believe they are real, no mat-
ter what measure is used to quantify accuracy. This trade-
off implies that optimizing distortion measures can be not
only ineffective, but also potentially damaging in terms of
visual quality. This has been empirically observed e.g. in
[22, 16, 38, 51, 6], but was never established theoretically.

From the standpoint of algorithm design, we show that
generative adversarial nets (GANs) provide a principled
way to approach the perception-distortion bound. This
gives theoretical support to the growing empirical evi-
dence of the advantages of GANs in image restoration
[22, 38, 35, 51, 36, 15, 55].

The perception-distortion tradeoff has major implica-
tions on low-level vision. In certain applications, recon-
struction accuracy is of key importance (e.g. medical imag-
ing). In others, perceptual quality may be preferred. The
impossibility of simultaneously achieving both goals calls
for a new way for evaluating algorithms: By placing them
on the perception-distortion plane. We use this new method-
ology to conduct an extensive comparison between recent
super-resolution (SR) methods, revealing which SR meth-
ods lie closest to the perception-distortion bound.

2. Distortion and perceptual quality

Distortion and perceptual quality have been studied in
many different contexts, and are sometimes referred to by
different names. Let us briefly put past works in our context.

2.1. Distortion (full-reference) measures

Given a distorted image x̂ and a ground-truth reference
image x, full-reference distortion measures quantify the
quality of x̂ by its discrepancy to x. These measures are
often called full reference image quality criteria because of
the reasoning that if x̂ is similar to x and x is of high qual-
ity, then x̂ is also of high quality. However, as we show in
this paper, this logic is not always correct. We thus prefer
to call these measures distortion or dissimilarity criteria.

The most common distortion measure is the MSE, which
is quite poorly correlated with semantic similarity between
images [44]. Many alternative, more perceptual, distor-
tion measures have been proposed over the years, including
SSIM [45], MS-SSIM [47], IFC [41], VIF [40], VSNR [3]
and FSIM [52]. Recently, measures based on the `2-
distance between deep feature maps of a neural-net have
been shown to capture more semantic similarities. These
measures were used as loss functions in super-resolution
and style transfer applications, leading to reconstructions
with high visual quality [16, 22, 38].

2.2. Perceptual quality

The perceptual quality of an image x̂ is the degree to
which it looks like a natural image, and has nothing to do
with its similarity to any reference image. In many image
processing domains, perceptual quality has been associated
with deviations from natural image statistics.

Human opinion based quality assessment Perceptual
quality is commonly evaluated empirically by the mean
opinion score of human subjects [31, 29]. Recently, it
has become increasingly popular to perform such studies
through real vs. fake questionnaires [15, 53, 39, 8, 6, 14,
54, 11]. These test the ability of a human observer to dis-
tinguish whether an image is real or the output of some al-
gorithm. The probability of success psuccess of the optimal
decision rule in this hypothesis testing task is known to be

psuccess = 1
2dTV(pX , pX̂) + 1

2 , (1)

where dTV(pX , pX̂) is the total-variation (TV) distance be-
tween the distribution pX̂ of images produced by the algo-
rithm in question, and the distribution pX of natural im-
ages [32]. Note that psuccess decreases as the deviation be-
tween pX̂ and pX decreases, becoming 1

2 (no better than a
coin toss) when pX̂ = pX .

No-reference quality measures Perceptual quality can
also be measured by an algorithm. In particular, no-
reference measures quantify the perceptual quality of an im-
age x̂ without depending on a reference image. These mea-
sures are commonly based on estimating deviations from
natural image statistics. For example, [46, 48, 23] proposed
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Figure 2. Problem setting. Given an original image x ∼ pX , a
degraded image y is observed according to some conditional dis-
tribution pY |X . Given the degraded image y, an estimate x̂ is con-
structed according to some conditional distribution pX̂|Y . Distor-
tion is quantified by the mean of some distortion measure between
X̂ and X . The perceptual quality index corresponds to the devia-
tion between pX̂ and pX .

a perceptual quality index based on the Kullback-Leibler
(KL) divergence between the distribution of the wavelet co-
efficients of x̂ and that of natural scenes. This idea was
further extended by the popular methods DIIVINE [31],
BRISQUE [29], BLIINDS-II [37] and NIQE [30], which
quantify perceptual quality by various measures of devia-
tion from natural image statistics in the spatial, wavelet and
DCT domains.

GAN-based image restoration Most recently, GAN-
based methods have demonstrated unprecedented percep-
tual quality in super-resolution [22, 38], inpainting [35, 51],
compression [36] and image-to-image translation [15, 55].
This was accomplished by utilizing an adversarial loss,
which minimizes some distance d(pX , pX̂GAN

) between the
distribution pX̂GAN

of images produced by the generator and
the distribution pX of images in the training dataset. A large
variety of GAN schemes have been proposed, which min-
imize different distances between distributions. These in-
clude the Jenson-Shannon divergence [10], the Wasserstein
distance [1], and any f -divergence [34].

3. Problem formulation

In statistical terms, a natural image x can be thought of as
a realization from the distribution of natural images pX . In
image restoration, we observe a degraded version y relating
to x via some conditional distribution pY |X (corresponding
to noise, blur, down-sampling, etc.). Given y, we produce
an estimate x̂ according to some distribution pX̂|Y . This
description is quite general in that it does not restrict the es-
timator x̂ to be a deterministic function of y. This problem
setting is illustrated in Fig. 2.

Given a full-reference dissimilarity criterion ∆(x, x̂), the

average distortion of an estimator X̂ is given by

E[∆(X, X̂)], (2)

where the expectation is over the joint distribution pX,X̂ .
This definition aligns with the common practice of evaluat-
ing average performance over a database of degraded natu-
ral images. Note that some distortion measures, e.g. SSIM,
are actually similarity measures (higher is better), yet can
always be inverted to become dissimilarity measures.

As discussed in Sec. 2.2, the perceptual quality of an es-
timator X̂ (as quantified e.g. by real vs. fake human opinion
studies) is directly related to the distance between the distri-
bution of its reconstructed images pX̂ , and the distribution
of natural images pX . We thus define the perceptual quality
index (lower is better) of an estimator X̂ as

d(pX , pX̂), (3)

where d(·, ·) is some divergence between distributions, e.g.
the KL divergence, TV distance, Wasserstein distance, etc.

Notice that the best possible perceptual quality is ob-
tained when the outputs of the algorithm follow the distri-
bution of natural images (i.e. pX̂ = pX ). In this situation,
by looking at the reconstructed images, it is impossible to
tell that they were generated by an algorithm. However, not
every estimator with this property is necessarily accurate.
Indeed, we could achieve perfect perceptual quality by ran-
domly drawing natural images that have nothing to do with
the original “ground-truth” images. In this case the distor-
tion would be quite large.

Our goal is to characterize the tradeoff between (2)
and (3). But let us first exemplify why minimizing the av-
erage distortion (2), does not necessarily lead to a low per-
ceptual quality index (3). We illustrate this with the square-
error distortion ∆(x, x̂) = ‖x− x̂‖2 and the 0−1 distortion
∆(x, x̂) = 1− δx,x̂ (where δ is Kronecker’s delta).

3.1. The square-error distortion

The minimum mean square-error (MMSE) estimator is
given by the posterior-mean x̂(y) = E[X|Y = y]. Consider
the case Y = X+N , whereX is a discrete random variable
with probability mass function

pX(x) =

{
p1 x = ±1,

p0 x = 0,
(4)

and N ∼ N (0, 1) is independent of X (see Fig. 3). In this
setting, the MMSE estimate is given by

x̂MMSE(y) =
∑

n∈{−1,0,1}

n p(X = n|y), (5)

where

p(X = n|y) =
pn exp{− 1

2 (y − n)2}∑
m∈{−1,0,1}

pm exp{− 1
2 (y −m)2}

. (6)



Figure 3. The distribution of the MMSE and MAP estimates.
In this example, Y = X +N , where X ∼ pX and N ∼ N (0, 1).
The distributions of both the MMSE and the MAP estimates devi-
ate significantly from the distribution pX .

Notice that x̂MMSE can take any value in the range (−1, 1),
whereas x can only take the discrete values {−1, 0, 1}.
Thus, clearly, pX̂MMSE

is very different from pX , as illus-
trated in Fig. 3. This demonstrates that minimizing the MSE
distortion does not generally lead to pX̂ ≈ pX .

The same intuition holds for images. The MMSE es-
timate is an average over all possible explanations to the
measured data, weighted by their likelihoods. However the
average of valid images is not necessarily a valid image, so
that the MMSE estimate frequently “falls off” the natural
image manifold [22]. This leads to unnatural blurry recon-
structions, as illustrated in Fig. 4. In this experiment, x is
a 280 × 280 image comprising 100 smaller 28 × 28 digit
images. Each digit is chosen uniformly at random from a
dataset comprising 54K images from the MNIST dataset
[21] and an additional 5.4K blank images. The degraded
image y is a noisy version of x. As can be seen, the MMSE
estimator produces blurry reconstructions, which do not fol-
low the statistics of the (binary) images in the dataset.

3.2. The 0− 1 distortion

The discussion above may give the impression that un-
natural estimates are mainly a problem of the square-error
distortion, which causes averaging. One way to avoid aver-
aging, is to minimize the binary 0 − 1 loss, which restricts
the estimator to choose x̂ only from the set of values that
x can take. In fact, the minimum mean 0 − 1 distortion is
attained by the maximum-a-posteriori (MAP) rule, which is
very popular in image restoration. However, as we exem-
plify next, the distribution of the MAP estimator also devi-
ates from pX . This behavior has also be studied in [33].

Consider again the setting of (4). In this case, the MAP
estimate is given by

x̂MAP(y) = arg max
n∈{−1,0,1}

p(X = n|y), (7)

M
M

SE

Original Noisy ( 1)

M
A

P

1 3 5Denoised

Figure 4. MMSE and MAP denoising. Here, the original im-
age consists of 100 smaller images, chosen uniformly at random
from the MNIST dataset enriched with blank images. After adding
Gaussian noise (σ = 1, 3, 5), the image is denoised using the
MMSE and MAP estimators. In both cases, the estimates signifi-
cantly deviate from the distribution of images in the dataset.

where p(X = n|y) is as in (6). Now, it can be easily verified
that when log(p1/p0) > 1/2, we have x̂MAP(y) = sign(y).
Namely, the MAP estimator never predicts the value 0.
Therefore, in this case, the distribution of the estimate is

pX̂MAP
(x̂) =

{
0.5 x̂ = +1,

0.5 x̂ = −1,
(8)

which is obviously different from pX of (4) (see Fig. 3).
This effect can also be seen in the experiment of Fig. 4.

Here, the MAP estimator is increasingly dominated by
blank images as the noise level rises, and thus clearly de-
viates from the underlying prior distribution.

4. The perception-distortion tradeoff
We saw that low distortion does not generally imply

good perceptual-quality. An interesting question, then, is:
What is the best perceptual quality that can be attained by
an estimator with a prescribed distortion level?

Definition 1. The perception-distortion function of a signal
restoration task is given by

P (D) = min
pX̂|Y

d(pX , pX̂) s.t. E[∆(X, X̂)] ≤ D, (9)

where ∆(·, ·) is a distortion measure and d(·, ·) is a diver-
gence between distributions.
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Figure 5. Plot of Eq. (9) for the setting of Example 1. The min-
imal attainable KL distance between pX and pX̂ subject to a con-
straint on the maximal allowable MSE between X and X̂ . Here,
Y = X + N , where X ∼ N (0, 1) and N ∼ N (0, σN ), and
the estimator is linear, X̂ = aY . Notice the clear trade-off: The
perceptual index (dKL) drops as the allowable distortion (MSE) in-
creases. The graphs cut-off at the MMSE (marked by a square).

In words, P (D) is the minimal deviation between the
distributions pX and pX̂ that can be attained by an estimator
with distortionD. To gain intuition into the typical behavior
of this function, consider the following example.

Example 1. Suppose that Y = X+N , whereX ∼ N (0, 1)
and N ∼ N (0, σN ) are independent. Take ∆(·, ·) to be the
square-error distortion and d(·, ·) to be the KL divergence.
For simplicity, let us restrict attention to estimators of the
form X̂ = aY . In this case, we can derive a closed form
solution to Eq. (9) (see Supplementary), which is plotted for
several noise levels σN in Fig. 5. As can be seen, the min-
imal attainable dKL(pX , pX̂) drops as the maximal allow-
able distortion (MSE) increases. Furthermore, the tradeoff
is convex and becomes more severe at higher noise levels
σN .

In general settings, it is impossible to solve (9) analyti-
cally. However, it turns out that the behavior seen in Fig. 5 is
typical, as we show next (see proof in the Supplementary).

Theorem 1 (The perception-distortion tradeoff). Assume
the problem setting of Section 3. If d(p, q) of (3) is con-
vex in its second argument1, then the perception-distortion
function P (D) of (9) is

1. monotonically non-increasing;
2. convex.

Note that Theorem 1 requires no assumptions on the dis-
tortion measure ∆(·, ·). This implies that a tradeoff between
perceptual quality and distortion exists for any distortion
measure, including e.g. MSE, SSIM, square error between
VGG features [16, 22], etc. Yet, this does not imply that
all distortion measures have the same perception-distortion
function. Indeed, as we demonstrate in Sec. 6, the tradeoff
tends to be less severe for distortion measures that capture
semantic similarities between images.

1d(p, λq1 +(1−λ)q2) ≤ λd(p, q1)+ (1−λ)d(p, q2), ∀λ ∈ [0, 1]

The convexity of P (D) implies that the tradeoff is more
severe at the low-distortion and at the high-perceptual-
quality extremes. This is particularly important when con-
sidering the TV divergence which is associated with the
ability to distinguish between real vs. fake images (see
Sec. 2.2). Since P (D) is steeper at the low-distortion
regime, any small improvement in distortion for an algo-
rithm whose distortion is already low, must be accompanied
by a large degradation in the ability to fool a discriminator.
Similarly, any small improvement in the perceptual qual-
ity of an algorithm whose perceptual index is already low,
must be accompanied by a large increase in distortion. Let
us comment that the assumption that d(p, q) is convex, is
not very limiting. For instance, any f -divergence (e.g. KL,
TV, Hellinger, X 2) as well as the Renyi divergence, satisfy
this assumption [5, 43]. In any case, the function P (D)
is monotonically non-increasing even without this assump-
tion.

4.1. Connection to rate-distortion theory

The perception-distortion tradeoff is closely related to
the well-established rate-distortion theory [4]. This theory
characterizes the tradeoff between the bit-rate required to
communicate a signal, and the distortion incurred in the
signal’s reconstruction at the receiver. More formally, the
rate-distortion function of a signal X is defined by

R(D) = min
pX̂|X

I(X; X̂) s.t. E[∆(X, X̂)] ≤ D, (10)

where I(X; X̂) is the mutual information betweenX and X̂ .
There are, however, several key differences between the

two tradeoffs. First, in rate-distortion the optimization is
over all conditional distributions pX̂|X , i.e. given the orig-
inal signal. In the perception-distortion case, the estimator
has access only to the degraded signal Y , so that the opti-
mization is over the conditional distributions pX̂|Y , which
is more restrictive. In other words, the perception-distortion
tradeoff depends on the degradation pY |X , and not only on
the signal’s distribution pX (see Example 1). Second, in
rate-distortion the rate is quantified by the mutual informa-
tion I(X; X̂), which depends on the joint distribution pX,X̂ .
In our case, perception is quantified by the similarity be-
tween pX and pX̂ , which does not depend on their joint
distribution. Lastly, mutual information is inherently con-
vex, while the convexity of the perception-distortion curve
is guaranteed only when d(·, ·) is convex.

5. Traversing the tradeoff with a GAN
There exists a systematic way to design estimators that

approach the perception-distortion curve: Using GANs.
Specifically, motivated by [22, 35, 51, 38, 36, 15], restora-
tion problems can be approached by modifying the loss of
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Figure 6. Image denoising utilizing a GAN. A Wasserstein GAN
was trained to denoise the images of the experiment in Fig. 4. The
generator loss lgen = lMSE + λ ladv consists of a perceptual quality
(adversarial) loss and a distortion (MSE) loss, where λ controls the
trade-off between the two. For each λ ∈ [0, 0.3], the graph depicts
the distortion (MSE) and perceptual quality (Wasserstein distance
between pX and pX̂ ). The curve connecting the estimators is a
good approximation to the theoretical perception-distortion trade-
off (illustrated by a dashed line).

the generator of a GAN to be

`gen = `distortion + λ `adv, (11)

where `distortion is the distortion between the original and re-
constructed images, and `adv is the standard GAN adversar-
ial loss. It is well known that `adv is proportional to some
divergence d(pX , pX̂) between the generator and data dis-
tributions [10, 1, 34] (the type of divergence depends on the
loss). Thus, (11) in fact approximates the objective

`gen ≈ E[∆(x, x̂)] + λ d(pX , pX̂). (12)

Viewing λ as a Lagrange multiplier, it is clear that minimiz-
ing `gen is equivalent to minimizing (9) for someD. Varying
λ correspond to varyingD, thus producing estimators along
the perception-distortion function.

Let us use this approach to explore the perception-
distortion tradeoff for the digit denoising example of Fig. 4
with σ = 3. We train a Wasserstein GAN (WGAN) based
denoiser [1, 12] with an MSE distortion loss `distortion. Here,
`adv is proportional to the Wasserstein distance dW (pX , pX̂)
between the generator and data distributions. The WGAN
has the valuable property that its discriminator (critic)
loss is an accurate estimate (up to a constant factor) of
dW (pX , pX̂) [1]. This allows us to easily compute the per-
ceptual quality index of the trained denoiser. We obtain a

Perceptual 
Index

Distortion

A
B

C

D

Figure 7. Dominance and admissibility. Algorithm A is domi-
nated by Algorithm B, and is thus inadmissible. Algorithms B, C
and D are all admissible, as they are not dominated by any algo-
rithm.

set of estimators with several values of λ ∈ [0, 0.3]. For
each denoiser, we evaluate the perceptual quality by the fi-
nal discriminator loss. As seen in Fig. 6, the curve con-
necting the estimators on the perception-distortion plane is
monotonically decreasing. Moreover, it is associated with
estimates that gradually transition from blurry and accurate
to sharp and inaccurate. This curve obviously does not co-
incide with the analytic bound (9) (illustrated by a dashed
line). However, it seems to be adjacent to it. This is in-
dicated by the fact that the left-most point of the WGAN
curve is very close to the left-most point of the theoretical
bound, which corresponds to the MMSE estimator. See the
Supplementary for the WGAN training details and architec-
ture.

Besides the MMSE estimator, Figure 6 also includes the
MAP estimator and an estimator which randomly draws im-
ages from the dataset (denoted “random draw”). The per-
ceptual quality of those three estimators is evaluated, as
above, by the final loss of the WGAN discriminator [1],
trained (without a generator) to distinguish between the es-
timators’ outputs and images from the dataset. Note that
the denoising WGAN estimator (D) achieves the same dis-
tortion as the MAP estimator, but with far better perceptual
quality. Furthermore, it achieves nearly the same percep-
tual quality as the random draw estimator, but with a signif-
icantly lower distortion.

6. Practical method for evaluating algorithms

Certain applications may require low-distortion (e.g. in
medical imaging), while others may prefer superior percep-
tual quality. How should image restoration algorithms be
evaluated, then?

Definition 2. We say that Algorithm A dominates Algo-
rithm B if it has better perceptual quality and less distortion.

Note that if Algorithm A is better than B in only one of
the two criteria, then neither A dominates B nor B domi-
natesA. Therefore, among a group of algorithms, there may
be a large subset which can be considered equally good.
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Figure 8. Perception-distortion evaluation of SR algorithms. We plot 16 algorithms on the perception-distortion plane. Perception is
measured by the recent NR metric by Ma et al. [26] which is specifically designed for SR quality assessment. Distortion is measured by
the common full-reference metrics RMSE, SSIM, MS-SSIM, IFC, VIF and VGG2,2. In all plots, the lower left corner is blank, revealing
an unattainable region in the perception-distortion plane. In proximity of the unattainable region, an improvement in perceptual quality
comes at the expense of higher distortion.

Definition 3. We say that an algorithm is admissible among
a group of algorithms, if it is not dominated by any other
algorithm in the group.

As shown in Figure 7, these definitions have very simple
interpretations when plotting algorithms on the perception-
distortion plane. In particular, the admissible algorithms
in the group, are those which lie closest to the perception-
distortion bound.

As discussed in Sec. 2, distortion is measured by full-
reference (FR) metrics, e.g. [45, 47, 41, 40, 3, 52, 16]. The
choice of the FR metric, depends on the type of similar-
ities we want to measure (per-pixel, semantic, etc.). Per-
ceptual quality, on the other hand, is ideally quantified by
collecting human opinion scores, which is time consum-
ing and costly [31, 37]. Instead, the divergence d(pX , pX̂)
can be computed, for instance by training a discrimina-
tor net (see Sec. 5). However, this requires many train-
ing images and is thus also time consuming. A practi-
cal alternative is to utilize no-reference (NR) metrics, e.g.
[29, 30, 37, 31, 50, 17, 26], which quantify the perceptual
quality of an image without a corresponding original im-
age. In scenarios where NR metrics are highly correlated
with human mean-opinion-scores (e.g. 4× super-resolution
[26]), they can be used as a fast and simple method for ap-

proximating the perceptual quality of an algorithm2.
We use this approach to evaluate 16 SR algorithms in a

4× magnification task, by plotting them on the perception-
distortion plane (Fig. 8). We measure perceptual quality us-
ing the recent NR metric by Ma et al. [26] which is specif-
ically designed for SR quality assessment (see Supplemen-
tary for experiments with the NR metrics BRISQUE [29],
NIQE [30] and BLIINDS-II [37]). We measure distortion
by the five common FR metrics RMSE, SSIM [45], MS-
SSIM [47], IFC [41] and VIF [40], and additionally by the
recent VGG2,2 metric (the distance in the feature space of
a VGG net) [22, 16]. To conform to previous evaluations,
we compute all metrics on the y-channel after discarding a
4-pixel border (except for VGG2,2, which is computed on
RGB images). Comparisons on color images can be found
in the Supplementary. The algorithms are evaluated on the
BSD100 dataset [27]. The evaluated algorithms include:
A+ [42], SRCNN [9], SelfEx [13], VDSR [18], Johnson
et al. [16], LapSRN [19], Bae et al. [2] (“primary” vari-
ant), EDSR [24], SRResNet variants which optimize MSE

2In scenarios where NR metrics are inaccurate (e.g. blind deblurring
with large blurs [20, 25]), the perceptual metric should be human-opinion-
scores or the loss of a discriminator trained to distinguish the algorithms’
outputs from natural images.



Figure 9. Visual comparison of algorithms closest to the perception-distortion bound. The algorithms are ordered from low to high
distortion (evaluated by IFC). Notice the co-occurring increase in perceptual quality.

and VGG2,2 [22], SRGAN variants which optimize MSE,
VGG2,2, and VGG5,4, in addition to an adversarial loss
[22], ENet [38] (“PAT” variant), Deng [7] (γ = 0.55), and
Mechrez et al. [28].

Interestingly, the same pattern is observed in all plots:
(i) The lower left corner is blank, revealing an unattain-
able region in the perception-distortion plane. (ii) In prox-
imity of this blank region, NR and FR metrics are anti-
correlated, indicating a tradeoff between perception and
distortion. Notice that the tradeoff exists even for the IFC
and VIF measures, which are considered to capture visual
quality better than MSE and SSIM. The tradeoff is evident
also for the VGG2,2 measure, but is somewhat weaker than
for MSE. This may indicate that VGG2,2 is a more “percep-
tual” metric. It should be noted, however, that when using
other NR metrics to measure perceptual quality, the trade-
off for VGG2,2 does not appear to be weaker (see Supple-
mentary). This is due to the sensitivity of some of the NR
metrics to the periodic artifacts that arise when minimizing
the VGG2,2 distortion3 (see Fig. 9).

Figure 9 depicts the outputs of several algorithms lying
closest to the perception-distortion bound in the IFC graph.
While the images are ordered from low to high distortion
(according to IFC), their perceptual quality clearly improves
from left to right.

Both FR and NR measures are commonly validated by
calculating their correlation with human opinion scores,
based on the assumption that both should be correlated
with perceptual quality. However, as Fig. 10 shows, while
FR measures can be well-correlated with perceptual quality
when distant from the unattainable region, this is clearly not
the case when approaching the perception-distortion bound.
In particular, all tested FR methods are inconsistent with
human opinion scores which found the SRGAN to be su-
perb in terms of perceptual quality [22], while NR meth-
ods successfully determine this. We conclude that image
restoration algorithms should always be evaluated by a pair
of NR and FR metrics, constituting a reliable, reproducible
and simple method for comparison, which accounts for both
perceptual quality and distortion.

3Minimizing VGG2,2 (as done by SRResNet-VGG2,2), leads to
sharper images (compared to minimizing MSE) but with periodic artifacts
[16]. Different NR metrics have different sensitivities to these artifacts.

Until 2017: IFC well-correlated 
with perceptual quality

After 2017: IFC anti-correlated 
with perceptual quality

Figure 10. Correlation between distortion and perceptual qual-
ity. In proximity of the perception-distortion bound, distortion
and perceptual quality are anti-correlated. However, correlation
is possible at distance from the bound.

Up until 2016, SR algorithms occupied only the upper-
left section of the perception-distortion plane. Nowa-
days, emerging techniques are exploring new regions in
this plane. The SRGAN, ENet, Deng, Johnson et al. and
Mechrez et al. methods are the first (to our knowledge) to
populate the high perceptual quality region. In the near
future we will most likely witness continued efforts to ap-
proach the perception-distortion bound, not only in the low-
distortion region, but throughout the entire plane.

7. Conclusion

We proved and demonstrated the counter-intuitive phe-
nomenon that distortion and perceptual quality are at odds
with each other. Namely, the lower the distortion of an
algorithm, the more its distribution must deviate from the
statistics of natural scenes. We showed empirically that
this tradeoff exists for many popular distortion measures,
including those considered to be well-correlated with hu-
man perception. Therefore, any distortion measure alone,
is unsuitable for assessing image restoration methods. Our
novel methodology utilizes a pair of NR and FR metrics to
place each algorithm on the perception-distortion plane, fa-
cilitating a more informative comparison of image restora-
tion methods.
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