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Abstract

In recent years, deep neural networks (DNNs) achieved

unprecedented performance in many low-level vision tasks.

However, state-of-the-art results are typically achieved by

very deep networks, which can reach tens of layers with

tens of millions of parameters. To make DNNs implemen-

table on platforms with limited resources, it is necessary to

weaken the tradeoff between performance and efficiency. In

this paper, we propose a new activation unit, which is par-

ticularly suitable for image restoration problems. In con-

trast to the widespread per-pixel activation units, like Re-

LUs and sigmoids, our unit implements a learnable non-

linear function with spatial connections. This enables the

net to capture much more complex features, thus requiring

a significantly smaller number of layers in order to reach

the same performance. We illustrate the effectiveness of our

units through experiments with state-of-the-art nets for de-

noising, de-raining, and super resolution, which are alre-

ady considered to be very small. With our approach, we are

able to further reduce these models by nearly 50% without

incurring any degradation in performance.

1. Introduction

Deep convolutional neural networks (CNNs) have revo-

lutionized computer vision, achieving unprecedented per-

formance in high-level vision tasks such as classification

[45, 14, 17], segmentation [38, 1] and face recognition

[32, 43], as well as in low-level vision tasks like denoising

[20, 48, 3, 35], deblurring [30], super resolution [9, 23, 21]

and dehazing [37]. Today, the performance of CNNs is still

being constantly improved, mainly by means of increasing

the net’s depth. Indeed, identity skip connections [15] and

residual learning [14, 48], used within ResNets [14] and

DenseNets [17], now overcome some of the difficulties as-

sociated with very deep nets, and have even allowed to cross

the 1000-layer barrier [15].

The strong link between performance and depth, has ma-

jor implications on the computational resources and running

times required to obtain state-of-the-art results. In parti-
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Figure 1. xUnit activations vs. ReLU activations. xUnits are

nonlinear activations with learnable spatial connections. When

used in place of the popular per-pixel activations (e.g. ReLUs),

they lead to significantly better performance with a smaller num-

ber of total net parameters. The graph compares the denoising

performance of a conventional ConvNet (Conv+BN+ReLU layers)

with our xNet (Conv+xUnit layers) at a noise level of σ = 25. As

can be seen, xNet attains a much higher PSNR with the same num-

ber of parameters. Alternatively, it can achieve the same PSNR

with roughly 1/3 the number of ConvNet parameters.

cular, it implies that applications on real-time, low-power,

and limited resource platforms (e.g. mobile devices), can-

not currently exploit the full potential of CNNs.

In this paper, we propose a different mechanism for im-

proving CNN performance (see Fig. 1). Rather than increa-

sing depth, we focus on making the nonlinear activations

more effective. Most popular architectures use per-pixel

activation units, e.g. rectified linear units (ReLUs) [11], ex-

ponential linear units (ELUs) [5], sigmoids [31], etc. Here,

we propose to replace those units by xUnit, a layer with

spatial and learnable connections. The xUnit computes a

continuous-valued weight map, serving as a soft gate to its

input. As we show, although it is more computationally

demanding and memory consuming than a per-pixel unit,



the xUnit has a dramatic effect on the net’s performance.

Therefore, it allows using far fewer layers to match the per-

formance of a CNN with ReLU activations. Overall, this

results in a significantly improved tradeoff between perfor-

mance and efficiency, as illustrated in Fig. 1.

The xUnit has a set of learnable parameters. Therefore,

to conform to a total budget of parameters, xUnits must

come at the expense of some of the convolutional layers

in the net or some of the channels within those convoluti-

onal layers. This raises the question: What is the optimal

percentage of parameters to invest in the activation units?

Today, most CNN architectures are at one extreme of the

spectrum, with 0% of the parameters invested in the activa-

tions. Here, we show experimentally that the optimal per-

centage is much larger than zero. This suggests that the

representational power gained by using spatial activations

can be far more substantial than that offered by convolutio-

nal layers with per-pixel activations.

We illustrate the effectiveness of our approach in several

image restoration tasks. Specifically, we take state-of-the-

art CNN models for image denoising [48], super-resolution

[9, 23], and de-raining [10], which are already considered to

be very light-weight, and replace their activations with xU-

nits. We show that this allows us to further reduce the num-

ber of parameters (by discarding layers or channels) wit-

hout incurring any degradation in performance. In fact, we

show that for small models, we can save nearly 50% of the

parameters while achieving the same performance or even

better. As we show, this often allows to use three orders of

magnitude less training examples.

2. Related Work

The quest for accurate image enhancement algorithms

attracted significant research efforts over the past several

decades. Until 2012, the vast majority of algorithms relied

on generative image models, usually through maximum a-

posterori (MAP) estimation. Models were typically either

hand-crafted or learned from training images, and included

e.g. priors on derivatives [41], wavelet coefficients [33], fil-

ter responses [39], image patches [7, 50], etc. In recent ye-

ars, generative approaches are gradually being pushed aside

by discriminative methods, mostly based on CNNs. These

architectures typically directly learn a mapping from a de-

graded image to a restored one, and were shown to exhibit

excellent performance in many restoration tasks, including

e.g. denoising [3, 48, 20], debluring [30], super-resolution

[8, 9, 23, 21], dehazing [4, 25], and de-raining [10].

A popular strategy for improving the performance of

CNN models, is by increasing their depth. Various works

suggested ways to overcome some of the difficulties in trai-

ning very deep nets. These opened the door to a line of

algorithms using ever larger nets. Specifically, the residual

net (ResNet) architecture [14], was demonstrated to achieve

exceptional classification performance compared to a plain

network. Dense convolutional networks (DenseNets) [17]

took the “skip-connections” idea one step further, by con-

necting each layer to every other layer in a feed-forward

fashion. This allowed to achieve excellent performance in

very deep nets.

These ideas were also adopted by the low-level vision

community. In the context of denoising, Zhang et al. [48]

were the first to train a very deep CNN for denoising, yiel-

ding state-of-the-art results. To train their net, which has

0.5M parameters, they utilized residual learning and batch

normalization [48], alleviating the vanishing gradients pro-

blem. In [20], a twice larger model was proposed, which is

based on formatting the residual image to contain structu-

red information instead of learning the difference between

clean and noisy images. Similar ideas were also proposed

in [34, 36, 49], leading to models with large numbers of pa-

rameters. Recently, a very deep network based on residual

learning was proposed in [2], which contains more than 60

layers, and 17M parameters.

In the context of super-resolution, the progress was si-

milar. In the near past, state-of-the-art methods used only a

few tens of thousands of parameter. For example, the SR-

CNN model [9] contains only three convolution layers, with

only 57K parameters. The very deep super-resolution mo-

del (VDSR) [21] already used 20 layers with 660K parame-

ters. Nowadays, much more complex models are in use. For

example, the well-known SRResNet [23] uses more than

1.5M parameters, and the the EDSR network [27] (win-

ner of the NTIRE2017 super resolution challenge [46]), has

43M parameters.

The trend of making CNNs as deep as possible, poses

significant challenges in terms of running those models on

platforms with low-power and limited computation and me-

mory resources. One approach towards diminishing me-

mory consumption and access times, is to use binarized neu-

ral networks [6]. These architectures, which were shown

beneficial in classification tasks, constrain the weights and

activations to be binary. Another approach is to replace

the multi-channel convolutional layers by depth-wise con-

volutions [16]. This offers a significant reduction in size

and latency, while allowing reasonable classification accu-

racy. In [44], it was suggested to reduce network complex-

ity and memory consumption for super resolution, by in-

troducing a sub-pixel convolutional layer that learns upsca-

ling filters. In [24], an architecture which exploits non-local

self-similarities in images, was shown to yield good results

with reduced models. Finally, learning the optimal slope of

leaky ReLU type activations has also shown to lead to more

efficient models [13].
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(a) Reinterpretation of the ReLU activation. (b) Our proposed xUnit activation.

Figure 2. The xUnit activation layer. (a) The popular ReLU activation can be interpreted as performing an element-wise product between

its input zk and a weight map gk, which is a binarized version of zk. (b) The xUnit constructs a continuous weight map taking values in

[0, 1], by performing a nonlinear learnable spatial function on zk.

3. xUnit

Although a variety of CNN architectures exist, their buil-

ding blocks are quite similar, mainly comprising of convo-

lutional layers and per-pixel activation units. Mathemati-

cally, the features xk+1 at layer k + 1 are commonly calcu-

lated as

zk = Wkxk + bk,

xk+1 = f(zk), (1)

where x0 is the input to the net, Wk performs a convolution

operation, bk is a bias term, zk is the output of the convolu-

tional layer, and f(·) is some nonlinear activation function

which operates element-wise on its argument. Popular acti-

vation functions include the ReLU [11], leaky ReLU [28],

ELU [5], tanh and sigmoid functions.

Note that there is a clear dichotomy in (1): The convolu-

tional layers are responsible for the spatial processing, and

the activation units for the nonlinearities. One may won-

der if this is the most efficient way to realize the complex

functions needed in low-level vision. In particular, is there

any reason not to allow spatial processing also within the

activation functions?

Element-wise activations can be thought of as nonlinear

gating functions. Specifically, assuming that f(0) = 0, as

is the case for all popular activations, (1) can be written as

xk+1 = zk ◦ gk, (2)

where ◦ denotes the (element-wise) Hadamard product, and

gk is a (multi-channel) weight map that depends on zk
element-wise, as

[gk]i =
[f(zk)]i
[zk]i

. (3)

Here 0/0 should be interpreted as 0. For example, the

weight map gk associated with the ReLU function f(·), is a

binary map which is a thresholded version of zk,

[gk]i =

{

1 [zk]i > 0,

0 [zk]i ≤ 0.
(4)

This interpretation is visualized in Fig. 2(a) (bias not

shown).

Since the nonlinear activations are what grants CNNs

their ability to implement complex functions, here we pro-

pose to use learnable spatial activations. That is, instead

of the element-wise relation (3), we propose to allow each

element in gk to depend also on the spatial neighborhood of

the corresponding element in zk. Specifically, we introduce

xUnit, in which

[gk]i = exp{−[dk]
2
i
}, (5)

and

dk = Hk ReLU(zk), (6)

with Hk denoting depth-wise convolution [16]. The idea is

to introduce (i) nonlinearity (ReLU), (ii) spatial processing

(depth-wise convolution), and (iii) construction of gating

maps in the range [0, 1] (Gaussian). The depth-wise con-

volution applies a single filter to each input channel, and is

significantly more efficient in terms of memory and compu-

tations than the multi-channel convolution popularly used

in CNNs. Note that the filters Hk have to be learned during

training. To make the training stable, we also add batch-

normalization layers [19] before the ReLU and before the

exponentiation. This is illustrated in Fig. 2(b).

Merely replacing ReLUs with xUnits clearly increases

memory consumption and running times at test stage. This

is mostly due to their convolutional operations (the expo-

nent can be implemented using a look-up table). Speci-

fically, an xUnit with a d-channel input and a d-channel

output involving r × r filters, introduces an overhead of
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Figure 3. Denoising performance vs. number of parame-

ters. We compare a ConvNet composed of feed-forward

Conv+BN+ReLU layers, with our xNet which comprises a se-

quence of Conv+xUnit layers. We gradually increase the num-

ber of layers for both nets and record the average PSNR obtained

in denoising the BSD68 dataset with noise level σ = 25, as a

function of the total number of parameters in the net. Training

configurations are the same for both networks. Our xNet attains a

much higher PSNR with the same number of parameters. Alter-

natively, it can achieve the same PSNR with roughly one third the

number of ConvNet parameters.

(r2 + 4)d parameters (r × r × d for the depth-wise filters,

and 2 × d for each batch-normalization layer). However,

first, note that this overhead is relatively mild compared to

the r2d2 parameters of each r × r × d × d convolutional

layer. Second, in return to that overhead, xUnits provide a

performance boost. This means that the same performance

can be attained with less layers or with less channels per

layer. Therefore, the important question is whether xU-

nits improve the overall tradeoff between performance and

number of parameters.

Figure 3 shows the effect of using xUnits in a denoising

task. Here, we trained two simple net architectures to re-

move additive Gaussian noise of standard deviation σ = 25
from noisy images, using a varying number of layers. The

first net is a traditional ConvNet architecture comprising

a sequence of Conv+BN+ReLU layers. The second net,

which we coin xNet, comprises a sequence of Conv+xUnit

layers. In both nets, the regular convolutional layers (not

the ones within the xUnits) comprise 64 channel 3 × 3 fil-

ters. For the xUnits, we varied the size of the depth-wise

filters from 1 × 1 to 9 × 9. We trained both nets on 400

images from the BSD dataset [29] using residual learning

(i.e. learning to predict the noise and subtracting the noise

estimate from the noisy image at test time). This has been

shown to be advantageous for denoising in [48]. As can be
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Figure 4. Denoising performance vs. percentage of activation

parameters. Varying the supports of the xUnit filters improves

performance, but also increases the overall number of parameters.

Here, we show the average denoising PSNR as a function of the

percentage of the overall parameters invested in the xUnit activati-

ons, when the total number of parameters is constrained to 99, 136.

This corresponds to a vertical cross section of the graph in Fig. 3.

As can be seen, while conventional ConvNets invest 0% of the

parameters in the activations, this is clearly sub-optimal. A sig-

nificant improvement in performance is obtained when investing

about 20% of the total parameters in the activations.

seen in the figure, when the xUnit filters are 1× 1, the peak

signal to noise ratio (PSNR) attained by xNet exceeds that

of ConvNet by only a minor gap. In this case, the xUnits are

not spatial. However, as the xUnits’ filters become larger,

xNet’s performance begins to improve, for any given total

number of parameters. Note, for example, that a 3 layer

xNet with 9× 9 activations outperforms a 9 layer ConvNet,

although having less than 1/3 the number of parameters.

To further understand the performance-computation tra-

deoff when using spatial activations, Fig. 4 shows a vertical

cross section of the graph in Fig. 3 at an overall of 99,136

parameters. Here, the PSNR is plotted against the percen-

tage of parameters invested in the xUnit activations. In a

traditional ConvNet, 0% of the parameters are invested in

the activations. As can be seen in the graph, this is clearly

sub-optimal. In particular, the optimal percentage can be

seen to be at least 22%, where the performance of xNet rea-

ches a plateau. In fact, after around 15% (corresponding to

9× 9 activation filters), the benefit in further increasing the

filters’ supports becomes relatively minor.

To gain intuition into the mechanism that allows xNet

to achieve better results with less parameters, we depict

in Fig. 5 the layer 4 feature maps z4, weight (activation)

maps g4, and their products x5, for a ConvNet and an xNet

operating on the same noisy input image. Interestingly, we



(a) xNet-4: layer-4 features. (b) xNet-4: layer-4 activation maps. (c) xNet-4: layer-4 multiplication results. 

(d) ConvNet-4: layer-4 features. (e) ConvNet-4: layer-4 activation maps. (f) ConvNet-4: layer-4 multiplication results. 

Figure 5. Visualization of xNet activations. A 4-layer xNet and a 4-layer ConvNet (with ReLU activations) were trained to denoise images

with noise level σ = 25 using direct learning. The 64 feature maps, activation maps, and their products, at layer 4 are shown for both nets,

when operating on the same input image. In xNet, each activation map is a spatial function of the corresponding feature map, whereas in

ConvNet, it is a per-pixel function. As can be seen, the ConNet’s activations are very sparse, while the xNet’s activations are quite dense.

Thus, it seems that in xNet, more feature maps participate in the denoising effort.

see that many more xNet activations are close to 1 (white)

than ConvNet activations. Thus, it seems that in xNet, more

channels take part in the denoising effort. Moreover, it can

be seen that the xNet weight maps are quite complex functi-

ons of the features, as opposed to the simple binarization

function of the ReLUs in ConvNet.

Figure 6 compares several alternative xUnit designs.

The suggested design, which contains Batch Norm. (BN),

ReLU (RL), Conv. Depth-wise (CD) and Gaussian (GS),

achieves the best results. However, note that all designs

perform significantly better than a conventional ConvNet,

indicating that the spatial processing (CD, which appears

in all designs) contributes the most. Interestingly, the

BN+RL+CD combination, which allows the weight maps

to contain negative values, preforms quite similarly to our

suggested design when the number of layers is small. No-

netheless, unlike the other designs, for a larger number of

layers we experience gradients exploding during training.

This highlights the importance of the Gaussian, which re-

gulates training by keeping weights in the range [0, 1].

4. Experiments and Applications

Our goal is to show that many small-scale and medium-

scale state-of-the-art CNNs can be made almost 50% smal-

ler with xUnits, without incurring any degradation in per-

formance.
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Figure 6. xUnit design comparison. We compare various xU-

nit designs with a traditional ConvNet. We gradually increase the

number of layers for all nets and record the average PSNR obtai-

ned in denoising the BSD68 dataset with noise level σ = 50.

Training configurations are the same for all nets. The suggested

version, BN+RL+CD+BN+GS, attains the highest PSNR.

We implemented the proposed architecture in Pytorch.

We ran all experiments on a desktop computer with an In-

tel i5-6500 CPU and an Nvidia 1080Ti GPU. We used the



Methods BM3D WNNM EPLL MLP DnCNN-S xDnCNN

# of parameters - - - - 555K 303K

σ = 25 28.56 28.82 28.68 28.95 29.22 29.21

σ = 50 25.62 25.87 25.67 26.01 26.23 26.26

Table 1. Denoising performance. The average PSNR in [dB] attained by several state of the art denoising algorithms on the BSD68

dataset. As can be seen, our xDnCNN outperforms all non-CNN methods and achieves results that are on par with DnCNN, although

having roughly 1/2 the number of parameters.

(a) Noisy : 14.79dB (b) EPLL: 29.34dB (c) BM3D: 29.76dB

(d) MLP : 30.14dB (e) DnCNN: 30.22dB (f) xDnCNN (Our) : 30.43dB

Figure 7. Image denoising result. Comparison of the denoised images produced by EPLL, BM3D, MLP, DnCNN and our xDnCNN for

a noise level of σ = 50. In contrast to the competing methods, our xDnCNN manages to restore more of the image details, and introduces

no distracting artifacts. This is despite the fact that it has nearly half the number of parameters as DnCNN.

Adam [22] optimizer with its default settings for training

the nets. We initialized the learning rate to 10−3 and gradu-

ally decreased it to 10−4 during training. We kept the mini-

batch size fixed at 64. In all applications, we used 9 × 9
depth-wise convolutions in the xUnits, and minimized the

mean square error (MSE) over the training set.

4.1. Image Denoising

We begin by illustrating the effectiveness of xUnits in

image denoising. As a baseline architecture, we take the

state-of-the-art DnCNN denoising network [48]. We re-

place all ReLU layers with xUnit layers and reduce the

number of convolutional layers from 17 to 9. We keep all

convolutional layers with 64 channel 3 × 3 filters, as in the

original architecture. Our net, which we coin xDnCNN, has

only 54% the number of parameters of DnCNN (303K for

xDnCNN and 555K for DnCNN).

As in [48], we train our net on 400 images. We use ima-

ges from the Berkeley segmentation dataset (BSD) [29], en-

riched by random flipping and random cropping (80× 80).

The noisy images are generated by adding Gaussian noise

to the training images (different realization to each image).

We examine the performance of our net at noise levels

σ = 25, 50. Table 1 compares the average PSNR attained

by our xDnCNN to that attained by the original DnCNN

(variant ‘S’), as well as to the state-of-the-art non-CNN de-

noising methods BM3D [7], WNNM [12], EPLL [50], and

MLP [3]. The evaluation is performed on the BSD68 da-

taset [40], a subset of 68 images from the BSD dataset,

which is not included in the training set. As can be seen,

our xDnCNN outperforms all non-CNN denoising methods

and achieves results that are on par with DnCNN. This is

despite the fact that xDnCNN is nearly half the size of Dn-

CNN in terms of number of parameters. The superiority of

our method becomes more significant as the noise level in-

creases. At a noise level of σ = 50, our method achieves

the highest PSNR values on 57 out of the 68 images in the

dataset.



(a) Real rain (b) DerainNet (d) xDnCNN(c) DnCNN

Figure 8. De-raining a real rain image. Our xDnCNN deraining network manages to remove rain streaks from a real rainy image,

significantly better than DerainNet. This is despite the fact that our net has only 40% the number of parameters of DerainNet.

Figure 7 shows an example denoising result obtained

with xDnCNN, compared with BM3D, EPLL, MLP and

DnCNN-s, for a noise level of σ = 50. As can be seen,

our xDnCNN best reconstructs the fine details and barely

introduces any distracting artifacts. In contrast, all the other

methods (including DnCNN), introduce unpleasing distor-

tions.

4.2. Single image rain removal

Next, we use the same architecture in the task of remo-

ving rain streaks from a single image. We only introduce

one modification to our denoising xDnCNN, which is to

work on three channel (RGB) input images and to output

three channel images. This results in a network with 306K

parameters. We compare our results to a 3-channel input

3-channel output DnCNN version and to DerainNet [10], a

network with 753K parameters, which comprises three con-

volutional layers: 16×16×512, 1×1×512 and 8×8×3,

respectively. Similarly to denoising, we learn the residual

mapping between a rainy image and a clean image. Training

is performed on the dataset of DerainNet [10], which con-

tains 4900 pairs of clean and synthetically generated rainy

images. However, we evaluate our net on the Rain12 da-

taset [26], which contains 12 artificially generated images.

Although the training data is quite different from the test

data, our xDnCNN performs significantly better than Dn-

CNN and DerainNet, as shown in Table 2. This behavior

is also seen when de-raining real images. As can be seen

in Fig. 8, xDnCNN perform significantly better in cleaning

actual rain streaks. We thus conclude that xDnCNN is far

more robust to different rain appearances, while maintai-

ning its efficiency. Pay attention that our xDnCNN derai-

ning net has only 40% the number of parameters of Derain-

Net and only 55% the number of parameters of DnCNN.

4.3. Single image super resolution

Our xUnit activations can be also applied in single image

super resolution. We illustrate this with the state-of-the-art

SRResNet architecture [23] and with the very small SR-

CNN [9] model. For SRResNet, we replace the PReLU

Methods De-rainNet DnCNN xDnCNN

# of parameters 753K 558K 306K

PSNR [dB] 28.94 30.90 31.17

Table 2. De-raining performance on the Rain12 dataset. Our

xDnCNN attains a significantly higher PSNR than DnCNN and

De-rainNet, with significantly less parameters.

activations in the residual blocks by xUnits, and reduce

the number of residual blocks from 16 to 10. This vari-

ant, which we coin xSRResNet, has only 75% the num-

ber of parameters of SRResNet (1.546M for SRResNet and

1.155M for xSRResNet). The SRCNN architecture con-

tains three convolutional layers: 9 × 9 × 64, 5 × 5 × 32
and 5×5×1. Here, we study two different modifications to

SRCNN, where we replace the two ReLU layers with xUnit

layers. In the first modification, we reduce the size of the

filters in the middle layer from 5 × 5 × 32 to 3 × 3 × 32.

This variant, which we coin xSRCNNf, has only 56% the

number of parameters of SRCNN (32K for xSRCNNf and

57K for SRCNN). In the second modification, we reduce

the number of channels in the second layer from 64 to 42.

This variant, which we coin xSRCNNc, has only 77% the

number of parameters of SRCNN (44K for xSRCNNc and

57K for SRCNN).

The original SRCNN and SRResNet models were trai-

ned on about 400, 000 images from ImageNet [42]. Here,

we train our models on much smaller datasets. Specifically,

for xSRCNN we use only 91 images from [47] and 400
images from BSD. For xSRResNet, we use 25, 000 images

from the Mirflickr25k [18] dataset. We augment the data by

random flipping and random cropping.

Table 3 reports the results attained by all the models on

BSD100 dataset. As can be seen, our models attain results

that are on par with the original SRCNN and SRResNet,

although being much smaller and trained on a significantly

smaller number of images. Note that our xSRCNNf has less

parameters than xSRCNNc. This may suggests that a bet-

ter way to discard parameters in xNets is by reducing filter

sizes, rather than reducing channels. A possible explana-



Methods SRCNN xSRCNNc xSRCNNf SRResNet xSRResNet

# of parameters 57K 44K 32K 1.546M 1.155M

3× 28.41 28.54 28.53 - -

4× 26.90 27.04 27.06 27.58 27.61

Table 3. Super-resolution performance. The average PSNR in [dB] attained in the task of 3× and 4× SR on BSD100 dataset. SRCNN

was trained on 4 × 105 training examples, whereas our xSRCNN models were trained on only 491 images. SRResNet was trained on

3.5× 105 training examples, whereas our xSRResNet was trained on 2.5× 104 examples.

(a) xSRCNNf: layer-2 features. (b) xSRCNNf: layer-2 activation maps. (c) xSRCNNf: layer-2 multiplication results. 

(d) SRCNN: layer-2 features. (e) SRCNN: layer-2 activation maps. (f) SRCNN: layer-2 multiplication results. 

Figure 9. Visualization of SRCNN and xSRCNNf activations. The 32 features maps, activation maps, and their products at layer 2

are shown for both nets, when operating on the same input image for magnification 3×. As can be seen, the activations of SRCNN are

sparse, while those of xSRCNNf are dense. Thus, more feature maps participate in the reconstruction. This provides an explanation for the

superiority of xSRCNNf over SRCNN in terns of PSNR.

tion is that the 9 × 9 filters within the xUnits can partially

compensate for the small support of the filters in the convo-

lutional layers. However, the fact that discarding channels

can also provide a significant reduction in parameters at the

same performance, indicates that the channels in an xNet

are more effective than those in ConvNets with per-pixel

activations.

Figure 9 shows the layer 2 feature maps, activation maps,

and their products for both SRCNN and our xSRCNNf. As

in the case of denoising, we can see that in xSRCNN, many

more feature maps participate in the reconstruction effort

compared to SRCNN. This provides a possible explanation

to its ability to perform well with smaller filters (or with less

channels).

5. Conclusion

Popular CNN architectures use simple nonlinear activa-

tion units (e.g. ReLUs), which operate pixel-wise on the

feature maps. In this paper, we demonstrated that CNNs

can greatly benefit from incorporating learnable spatial con-

nections within the activation units. While these spatial

connections introduce additional parameters to the net, they

significantly improve its performance. Overall, the trade-

off between performance and number of parameters, is sub-

stantially improved. We illustrated how our approach can

reduce the size of several state-of-the-art CNN models for

denoising, de-raining and super-resolution, which are alre-

ady considered to be very small, by almost 50%. This is

without incurring any degradation in performance.
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