Supplementary materials for paper:
Revealing Common Statistical Behaviors in Heterogeneous
Populations

This supplementary document contains:
1. Proofs for Lemmas 1 and 2;

2. An alternative common-covariance estimation algorithm, which can be more efficient on
parallel platforms, and an empirical comparison to Alg. 1;

3. Resting-state fMRI experiments on a group of ADHD subjects, and a comparison to graph-
Lasso covariance estimation;

4. Analysis of the effect of kernel bandwidth on the pdf estimation in the ABP-PPG experiment.

1 Proof of Lemma 1

For convenience we write again the definitions

¢(Q) £ quuQa (1)
9i(q) = q" %4, q, (2)
hm(q) & i {Ilr}igm} 9;(q), (3)

and the assumptions of Theorem 1, which are
P (Amax(By) < @) = (4)
for some o > 0 and
P(g"S,g <€) >0 (5)

for every e > 0 and every unit-norm q. Since {g;(q)} and {h,,(q)} are random functions, we will
sometimes explicitly write g;(w,q) and h,,(w,q), where w denotes an element from the sample
space ). We begin by demonstrating the first part of the lemma, namely that

B (w,q) 230 (6)

for any g. To this end, fix g and w € . By definition, the sequence {h,,(w,q)}>°_; is monoton-
ically non-increasing and bounded from below, namely h,,(w,q) > hpyy1(w,q) > 0 for every m.
Therefore, this sequence converges for every w. Almost sure convergence implies convergence in
probability to the same limit. Therefore, to prove (6), we will show that h,,(w,q) 20, namely
that

lim P (Jhn(q)| >¢€) — 0 (7)

m—r oo

for every € > 0. Note that g;(g) > 0 for every j, so that h,,(g) > 0 for every m, and thus the
absolute value in (7) can be omitted. Since the random variables {g;(q)} are independent and
identically distributed, we have that

P(hm(q) > €) =P (N71{g;(q) > €}) =P ({g1(q) > e})" = (1 = P(g1(q) < €))" — 0,



where we used (5). This completes the proof of (6). Next, we prove the second part of the Lemma,
namely that

for any converging sequence {g,, }. To this end, we will first prove that all the functions {h,,(q)}
are Lipschitz w.p. 1. Note from (4) and the definition of g;(q) in (2) that each g;(q) is Lipschitz
w.p. 1. Therefore, all the functions {g;(g)}}jL; are simultaneously Lipschitz w.p. 1, with the same
Lipschitz constant 2« (a countable union of a.s. events). Fix any w € 2 within this a.s. event. The
function hq(w,y) is Lipschitz since it equals g1 (w,y). Let us show this also holds for hs(w,y). For
any two vectors x,y, we have that

91(w,y) > g1(w, @) = |g1(w, ) — g1 (w, Y)| = ha(w, @) — 2a]|z — yl|,
where we used (3). Similarly, we have that go(w,y) > ha(w, ) — 2aljz — y||. Therefore,
ha(w, y) = min{g1 (w, y), 92(w, y) } = h2(w, ®) — 2aflz — yl.

This implies that ha(w, ) — h2(w,y) < 2aljx — y||, and by switching the roles of x and y, we also
obtain

|ha(w, @) — ha(w, y)| < 2aflx -y, 9)

demonstrating that hs(w, q) is Lipschitz with the same constant 2. In a similar way, we obtain
that A, (w, q) is Lipschitz for every m. We are now ready to prove (8). We saw that all {h,(w,q)}
are Lipschitz a.s. and that |h,,(w,q)] — 0 a.s. for any g. The intersection of these two events is
also a.s. Fix any w in this intersection. Then

o (@; @) = o (@, @) = Bon (@, G47) + hin (@, ¢7)| < 20(@,,, — @7 + [ (w; @)| — 0. (10)

This completes the proof.

2 Proof of Lemma 2

The functions {¢(q)+ f»(q)} are continuous and bounded, therefore arg min,cc{#(q)+ fn(q)} # 0.
We have to prove that for every € > 0 there exists an N, such that

g, —q"[| <e Vn=>N. (11)

Fix € > 0 and define the set @ = {q € C : ||g — g*|| > €}. If the set Q is empty, then (11) is
obviously satisfied with N, = 1 and the proof is complete. If Q # (), then ¢(q) attains a minimum
over the set Q. This follows from the fact that Q is compact and ¢(q) is continuous and bounded.
Let

§ € arg min ¢(q) (12)
qeQ
and denote d(€) = ¢(q) — ¢(q*). From
Jim f,(q") =0, (13)

we know that there exists an N, such that 0 < f,(g*) < d(€) for every n > N,. Therefore, for
every n > N, we have that

o(q") + fn(q") < &(q") +d(e) = 9(q) é{lgigwq) + fn(@)]-
Fn0

This demonstrates that for every n > N, there exists no point at distance larger than e from g*,
at which the function ¢(q) + f,.(q) attains a lower value than at g*. In other words, the minimum
of ¢(q) + fn(q) must be attained at a point q,,, which satisfies (11). This completes the proof.
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Figure 1: Common covariance estimation with Alg. 1 in the full and pairwise form. We
used 100 noisy covariance matrices to estimate the underlying common covariance, using Alg. 1 in
the full and pairwise form. In this simulation, SNR = 1. Approximation of the MSE is based on
100 trials.

3 Accelerated covariance estimation

To speed up the estimation of the common covariance on parallel platforms, one can break the
task of estimating the full d x d covariance matrix 3,, into d x (d — 1)/2 sub-tasks of estimating
all 2 x 2 sub-covariance-matrices of 3,,. Those sub-tasks can be solved in parallel, while averaging
the d — 1 different estimates obtained for the diagonal entries. This procedure is not guaranteed
to yield a positive-semi definite estimate 3., so that negative eigenvalues have to be truncated.
However, this method enjoys the same asymptotic guarantees as the direct estimation of the full
covariance.

To study the effect of this approach on the estimation accuracy for a finite number of subjects,
we next compare between Alg. 1 and this pairwise version in a simulation. We take the common
covariance to be the identity matrix 3, = I and generate the noise covariance according to
equation (27) of the main text, where now A; = diag{f] ... 5}} with

Bl~U00] Vi=1,....mVk=1,...,d. (14)

For the rotation matrices, we first draw a matrix M j with iid entries uniformly distributed on the
interval [—50, 50]. Then, the matrix M ; is taken to be the Q matrix from the QR decomposition
of M ;. Figures 1 and 2 depict the MSE attained by both algorithms (normalized by the number
of entries in the estimated matrix, d?), as a function of the dimension d, for two different SNR
levels. As can be seen, in all the tested settings, Alg. 1 gives more accurate results. We conclude
that the potential improvement in running time offered by this approach, typically comes at the
cost of reduced estimation accuracy.

4 Comparison of common covariance matrices of Control sub-
jects and subjects with ADHD

We repeated the analysis of Sec. 5.3 in the main text on a group of 141 subjects diagnosed with
ADHD. In addition to our estimator and the Riemann mean and Euclidean mean estimators, we
also show results obtained with the graph Lasso estimator (Friedman et al., 2008) applied to all
data points from all the subjects. This estimator assumes a sparse precision matrix and selects
its Ly regularization weight through cross-validation. As can be seen in Figs. 3 and 4 below,
our estimator consistently detects higher correlations within known networks (around the main
diagonal).
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Figure 2: Common covariance estimation with Alg. 1 in the full and pairwise form We
used 100 noisy covariance matrices to estimate the underlying common covariance, using Alg. 1 in
the full and pairwise form. In this simulation, SNR = 0.1. Approximation of the MSE is based on
100 trials.

5 The effect of the kernel bandwidth in naive KDE and in
our common density estimator

In Sec. 5.4 of the main text, we demonstrated the ability of our common pdf estimator to reveal
delicate structures that are not seen with naive KDE applied on all data points from all patients. To
show that this phenomenon is not a matter of appropriate selection of bandwidth in the KDE, we
now repeat this experiment with several bandwidths, ranging from ones leading to over-smoothness
to ones leading to under-smoothness. As can be seen in Fig. 5 below, there exists no bandwidth
with which the vertical trace is seen in the KDE estimate. At the same time, this trace is seen
with all bandwidths in out pdf estimate.
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Figure 4: Comparison of group level correlation matrices of ADHD subjects.
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Figure 3: Comparison of group level correlation matrices of control subjects (same experiment as
in the main text).
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Figure 5: Common probability density estimation

from 0.1 (top left) to 0.01 (bottom right).
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of PPG and ABP with a bandwidths ranging
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