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1 Optimization Problem (4) for LEM and DFM

In the case of LEM and DFM, the objective f;TFKfi is optimized s.t. the con-
straints

fIDf; =615 ,
1"Df, =0,

where D is a diagonal matrix with entries [D];; = > [K]; ;. Similarly to (5),
these constraints can be interpreted as restrictions on the weighted means and
weighted correlations between the projections. Namely,

E[fi(X)d(X)] =0,
E[fi(X) f5(X)d(X)] =0,

where d(z) = [k(z,y)dy. Accordingly, we define non-redundancy in this case
as zero weighted correlation between each projection and any function of the
previous projections. That is, for each 7, we would like to ensure that

E[fi(X)g(fi-1(X),--, fi(X))d(X)] =0

for every function g (analogously to (8)). This is equivalent to the requirement
that

E[f;(X)d(X)|fi-1(X),---, i(X)] =0,
which we approximate at the data points by P;Df, = 0.
By denoting f, = D?f,, K = D *KD" > and P; = P,D?, the corre-
sponding optimization problem becomes



where min/max corresponds to LEM/DFM respectively. Therefore, to obtain a
non-redundant version of these algorithms, we simply apply Algorithm 1 with K
and P; rather than with K and P;, and then multiply the extracted projections
by D™ from the left. Notice that to form the regression matrix P;, we use

{fj}, and not {fj}

2 Quality of the approximations in Sect. 4

Equation (9) approximates Eq. (6) by restricting the conditional expectation
only at the discrete set of N data points. First, notice that we are only inter-
ested in the projections at these N points, so that it is unnecessary to constrain
the conditional expectation elsewhere. Furthermore, not only is it sufficient to
restrict at these points, but we could actually restrict at far fewer points without
suffering a significant degradation in performance. This is shown for the MNIST
experiment (see Sect. 5.3) in Table 2 below, where the value of p indicates the
ratio of the points at which the conditional expectation was constrained (the
points were chosen randomly).

Table 2. MNIST experiment classification errors [%].

15K examples, all labeled

# of ours

proj. LEM p=1 p=09 p=07 p=05 p=03 p=0.1
3 17.6 12.0 12.1 12.0 12.3 12.0 12.0
5 8.8 7.6 7.5 7.4 7.6 7.5 7.3
7 6.9 6.0 6.1 6.0 5.9 6.2 5.9
9 6.5 5.6 5.6 5.6 5.8 5.9 5.8
11 6.0 5.0 5.4 5.3 5.6 6.0 5.7

Equation (10) approximates Eq. (9) using the Nadaraya-Watson regressor,
4

which converges as N (i—1)+4 when computing the ith projection. Notice that
the regression is performed in the low-dimensional projection space and not the
high-dimensional data space which leads to an accurate approximation when the
number of projections is moderate.

3 Hyper-parameter Analysis

Three hyper-parameters need to be set when employing Algorithm 1: the kernel
smoother bandwidth A, the threshold for truncating the singular values of P;,
and the number of nearest neighbors (NN) computed in each row of the P;
matrices (see Sect. 4). Table 3 below shows the effect of these parameters on the
classification errors in the MNIST experiment (see Sect. 5.3).



Table 3. MNIST experiment classification errors [%].

15K examples, all labeled

# of o SVin NNs
proj.
06 05 04 03 02 5% 3% 1% | 10K 75K 5K
3 | 14.6 12.0 11.6 242 273|187 12.0 123 | 12.0 20 19.6
5 |72 76 78 75 81|84 7.6 82| 7.6 78 109
7 |58 60 59 64 68|62 6.0 65| 6.0 69 7.7
9 |56 56 57 60 65|57 56 58| 56 62 6.2
11 |54 50 54 60 60|54 50 54| 50 61 6.0

The kernel smoother bandwidth & is set adaptively for each projection by
h = a(Z;;ll %||fj||2)1/2, where the parameter o € [0.1,0.6]. Tuning « in this
range has a mild impact on the classification errors and tuning is needed to
achieve optimal results. This tuning can be done with a tune set for classification/
regression etc. and manually for visualization tasks.

The threshold for truncating the singular values of P; is set as a percentage of
the maximal singular value. A high threshold will result in a bad approximation
of P;, while a low threshold will reduce the feasible set of solutions. Our analysis
shows that 3% performs well in the MNIST experiment (3% worked well in the
other experiments as well). Taking a slightly lower threshold has a minor effect,
while taking a larger threshold degrades the classification results.

For optimal results, the number of NNs used for constructing P; should
be maximal (i.e. the number of training examples). However, as the number of
training examples increases the memory resources may not be sufficient to store
P;. The results show the degradation in classification error as the number of
NNs decreases, indicating that it is always desired to use as many NNs as the
memory resources allow.

4 Baseline comparisons for the artificial head image
experiment (Sect. 5.1)

We compare our results in the artificial head images experiment with two baseline
methods: PCA and ICA. As seen in Fig. 9, both methods fail to provide a
representation which faithfully reveals the two underlying parameters controlling
the dataset: the horizontal and vertical angles. The first and second projections
in both methods are correlated with the horizontal angle, while the vertical
angle is not captured. This affects the error in reconstructing the images from
the two-dimensional embeddings: the mean PSNR is 18.3/17.6 with PCA/ICA
(the PSNR with our non-redundant LEM/LTSA was 19.2/19.9), clearly showing
that these baseline methods are inferior in this task.
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Fig. 9. The two-dimensional embeddings of the artificial head images obtained with
(a) PCA, and (b) ICA. (c),(d) The first two projections of the head images vs. the
horizontal and vertical angles (6, ¢) of the heads. The two projections extracted by
these baseline methods are both correlated only with the horizontal angle 6.



