Implementation details

All the images are scaled to $[0,1]$. In all cases, the training is done using the ADAM optimizer with learning rate 10^{-3}, $\beta_1 = 0.9$, $\beta_2 = 0.999$. The Keras default Xavier initialization is used. Shared layers are denoted in red and connected by a bidirectional arrow: \leftrightarrow. $\text{Conv} \times (k \times k)$ stands for a convolution layer with n filters of size $k \times k$. ReLU stands for a rectified linear unit, i.e. the function $\max(x, 0)$. $\text{MP} k \times k \text{strides}$ stands for max-pooling of size $k \times k$ with stride s. $\text{FC} k$ stands for a fully-connected layer of size k. The symbol \oplus stands for the merge operation. For instance, if it appears after fully-connected layers of size 500 each, it denotes the resulting merged layer of size 1000. Outputs are processed by a SoftMax.

Unsupervised learning - MNIST

For the MNIST reconstruction experiments, we utilize a CNN-based version of the autoencoder and JAE presented in Figure 1 in the body. Mini-batch size is set to 256, with 10 epochs. The JAE losses are weighed equally.

Unsupervised learning - CIFAR-10

Mini-batch size is set to 128, with 10 epochs. The JAE losses are weighed equally. “$\text{Deconv} \times k \times k$” stands for a deconvolution layer with n filters of size $k \times k$ with 2×2 upsampling.
Unsupervised learning - celebA

The images are rescaled to $64 \times 64 \times 3$. Mini-batch size is set to 64, with 30 epochs. The JAE losses are weighed equally. We omit the ReLU activations for brevity, and use “Conv n, k, s” and “Deconv n, k, s” to denote convolutions and deconvolutions with n filters of size k with strides s.

Transfer learning - MNIST \leftrightarrow USPS

Mini-batch size is set to 64, with 10 epochs. The reconstruction losses are weighed 4 times higher than the classification losses.

Transfer learning - SVHN \rightarrow MNIST

Mini-batch size is set to 64, with 10 epochs. The reconstruction losses are weighed 4 times lower than the classification losses. In this case, as opposed to the previous one, the classification task is challenging enough to avoid early overfitting.
Transfer learning - SVHN→MNIST+USPS

Mini-batch size is set to 64, with 20 epochs. The reconstruction losses are weighed 4 times lower than the classification losses.